{"title":"Substrate Charge Transfer Induced Ferromagnetism in MnSe/SrTiO<sub>3</sub> Ultrathin Films.","authors":"Chun-Hao Huang, Chandra Shekar Gantepogu, Peng-Jen Chen, Ting-Hsuan Wu, Wei-Rein Liu, Kung-Hsuan Lin, Chi-Liang Chen, Ting-Kuo Lee, Ming-Jye Wang, Maw-Kuen Wu","doi":"10.3390/nano14161355","DOIUrl":null,"url":null,"abstract":"<p><p>The observation of superconductivity in MnSe at 12 GPa motivated us to investigate whether superconductivity could be induced in MnSe at ambient conditions. A strain-induced structural change in the ultrathin film could be one route to the emergence of superconductivity. In this report, we present the physical property of MnSe ultrathin films, which become tetragonal (stretched <i>ab</i>-plane and shortened <i>c</i>-axis) on a (001) SrTiO<sub>3</sub> (STO) substrate, prepared by the pulsed laser deposition (PLD) method. The physical properties of the tetragonal MnSe ultrathin films exhibit very different characteristics from those of the thick films and polycrystalline samples. The tetragonal MnSe films show substantial conductivity enhancement, which could be associated with the presence of superparamagnetism. The optical absorption data indicate that the electron transition through the indirect bandgap to the conduction band is significantly enhanced in tetragonal MnSe. Furthermore, the X-ray Mn <i>L</i>-edge absorption results also reveal an increase in unoccupied state valance bands. This theoretical study suggests that charge transfer from the substrate plays an important role in conductivity enhancement and the emergence of a ferromagnetic order that leads to superparamagnetism.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14161355","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The observation of superconductivity in MnSe at 12 GPa motivated us to investigate whether superconductivity could be induced in MnSe at ambient conditions. A strain-induced structural change in the ultrathin film could be one route to the emergence of superconductivity. In this report, we present the physical property of MnSe ultrathin films, which become tetragonal (stretched ab-plane and shortened c-axis) on a (001) SrTiO3 (STO) substrate, prepared by the pulsed laser deposition (PLD) method. The physical properties of the tetragonal MnSe ultrathin films exhibit very different characteristics from those of the thick films and polycrystalline samples. The tetragonal MnSe films show substantial conductivity enhancement, which could be associated with the presence of superparamagnetism. The optical absorption data indicate that the electron transition through the indirect bandgap to the conduction band is significantly enhanced in tetragonal MnSe. Furthermore, the X-ray Mn L-edge absorption results also reveal an increase in unoccupied state valance bands. This theoretical study suggests that charge transfer from the substrate plays an important role in conductivity enhancement and the emergence of a ferromagnetic order that leads to superparamagnetism.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.