{"title":"Design of All-Optical D Flip Flop Memory Unit Based on Photonic Crystal.","authors":"Yonatan Pugachov, Moria Gulitski, Dror Malka","doi":"10.3390/nano14161321","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a unique configuration for an all-optical D Flip Flop (D-FF) utilizing a quasi-square ring resonator (RR) and T-Splitter, as well as NOT and OR logic gates within a 2-dimensional square lattice photonic crystal (PC) structure. The components realizing the all-optical D-FF comprise of optical waveguides in a 2D square lattice PC of 45 × 23 silicon (Si) rods in a silica (SiO<sub>2</sub>) substrate. The utilization of these specific materials has facilitated the fabrication process of the design, diverging from alternative approaches that employ an air substrate, a method inherently unattainable in fabrication. The configuration underwent examination and simulation utilizing both plane-wave expansion (PWE) and finite-difference time-domain (FDTD) methodologies. The simulation outcomes demonstrate that the designed waveguides and RR effectively execute the operational principles of the D-FF by guiding light as intended. The suggested configuration holds promise as a logic block within all-optical arithmetic logic units (ALUs) designed for digital computing optical circuits. The design underwent optimization for operation within the C-band spectrum, particularly at 1550 nm. The outcomes reveal a distinct differentiation between logic states '1' and '0', enhancing robust decision-making on the receiver side and minimizing logic errors in the photonic decision circuit. The D-FF displays a contrast ratio (CR) of 4.77 dB, a stabilization time of 0.66 psec, and a footprint of 21 μm × 12 μm.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14161321","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a unique configuration for an all-optical D Flip Flop (D-FF) utilizing a quasi-square ring resonator (RR) and T-Splitter, as well as NOT and OR logic gates within a 2-dimensional square lattice photonic crystal (PC) structure. The components realizing the all-optical D-FF comprise of optical waveguides in a 2D square lattice PC of 45 × 23 silicon (Si) rods in a silica (SiO2) substrate. The utilization of these specific materials has facilitated the fabrication process of the design, diverging from alternative approaches that employ an air substrate, a method inherently unattainable in fabrication. The configuration underwent examination and simulation utilizing both plane-wave expansion (PWE) and finite-difference time-domain (FDTD) methodologies. The simulation outcomes demonstrate that the designed waveguides and RR effectively execute the operational principles of the D-FF by guiding light as intended. The suggested configuration holds promise as a logic block within all-optical arithmetic logic units (ALUs) designed for digital computing optical circuits. The design underwent optimization for operation within the C-band spectrum, particularly at 1550 nm. The outcomes reveal a distinct differentiation between logic states '1' and '0', enhancing robust decision-making on the receiver side and minimizing logic errors in the photonic decision circuit. The D-FF displays a contrast ratio (CR) of 4.77 dB, a stabilization time of 0.66 psec, and a footprint of 21 μm × 12 μm.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.