Ferran Romero, Maëva Labouyrie, Alberto Orgiazzi, Cristiano Ballabio, Panos Panagos, Arwyn Jones, Leho Tedersoo, Mohammad Bahram, Carlos A. Guerra, Nico Eisenhauer, Dongxue Tao, Manuel Delgado-Baquerizo, Pablo García-Palacios, Marcel G. A. van der Heijden
{"title":"Soil health is associated with higher primary productivity across Europe","authors":"Ferran Romero, Maëva Labouyrie, Alberto Orgiazzi, Cristiano Ballabio, Panos Panagos, Arwyn Jones, Leho Tedersoo, Mohammad Bahram, Carlos A. Guerra, Nico Eisenhauer, Dongxue Tao, Manuel Delgado-Baquerizo, Pablo García-Palacios, Marcel G. A. van der Heijden","doi":"10.1038/s41559-024-02511-8","DOIUrl":null,"url":null,"abstract":"Soil health is expected to be of key importance for plant growth and ecosystem functioning. However, whether soil health is linked to primary productivity across environmental gradients and land-use types remains poorly understood. To address this gap, we conducted a pan-European field study including 588 sites from 27 countries to investigate the link between soil health and primary productivity across three major land-use types: woodlands, grasslands and croplands. We found that mean soil health (a composite index based on soil properties, biodiversity and plant disease control) in woodlands was 31.4% higher than in grasslands and 76.1% higher than in croplands. Soil health was positively linked to cropland and grassland productivity at the continental scale, whereas climate best explained woodland productivity. Among microbial diversity indicators, we observed a positive association between the richness of Acidobacteria, Firmicutes and Proteobacteria and primary productivity. Among microbial functional groups, we found that primary productivity in croplands and grasslands was positively related to nitrogen-fixing bacteria and mycorrhizal fungi and negatively related to plant pathogens. Together, our results point to the importance of soil biodiversity and soil health for maintaining primary productivity across contrasting land-use types. Geographic patterns in plant growth are probably influenced by soil abiotic and biotic conditions. Here, the authors assess the relationship of a composite soil health index to primary productivity and the underlying environmental predictors across major land-use types in Europe.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 10","pages":"1847-1855"},"PeriodicalIF":13.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41559-024-02511-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil health is expected to be of key importance for plant growth and ecosystem functioning. However, whether soil health is linked to primary productivity across environmental gradients and land-use types remains poorly understood. To address this gap, we conducted a pan-European field study including 588 sites from 27 countries to investigate the link between soil health and primary productivity across three major land-use types: woodlands, grasslands and croplands. We found that mean soil health (a composite index based on soil properties, biodiversity and plant disease control) in woodlands was 31.4% higher than in grasslands and 76.1% higher than in croplands. Soil health was positively linked to cropland and grassland productivity at the continental scale, whereas climate best explained woodland productivity. Among microbial diversity indicators, we observed a positive association between the richness of Acidobacteria, Firmicutes and Proteobacteria and primary productivity. Among microbial functional groups, we found that primary productivity in croplands and grasslands was positively related to nitrogen-fixing bacteria and mycorrhizal fungi and negatively related to plant pathogens. Together, our results point to the importance of soil biodiversity and soil health for maintaining primary productivity across contrasting land-use types. Geographic patterns in plant growth are probably influenced by soil abiotic and biotic conditions. Here, the authors assess the relationship of a composite soil health index to primary productivity and the underlying environmental predictors across major land-use types in Europe.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.