Generative models for synthetic data generation: application to pharmacokinetic/pharmacodynamic data.

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Yulun Jiang, Alberto García-Durán, Idris Bachali Losada, Pascal Girard, Nadia Terranova
{"title":"Generative models for synthetic data generation: application to pharmacokinetic/pharmacodynamic data.","authors":"Yulun Jiang, Alberto García-Durán, Idris Bachali Losada, Pascal Girard, Nadia Terranova","doi":"10.1007/s10928-024-09935-6","DOIUrl":null,"url":null,"abstract":"<p><p>The generation of synthetic patient data that reflect the statistical properties of real data plays a fundamental role in today's world because of its potential to (i) be enable proprietary data access for statistical and research purposes and (ii) increase available data (e.g., in low-density regions-i.e., for patients with under-represented characteristics). Generative methods employ a family of solutions for generating synthetic data. The objective of this research is to benchmark numerous state-of-the-art deep-learning generative methods across different scenarios and clinical datasets comprising patient covariates and several pharmacokinetic/pharmacodynamic endpoints. We did this by implementing various probabilistic models aimed at generating synthetic data, such as the Multi-layer Perceptron Conditioning Generative Adversarial Neural Network (MLP cGAN), Time-series Generative Adversarial Networks (TimeGAN), and a more traditional approach like Probabilistic Autoregressive (PAR). We evaluated their performance by calculating discriminative and predictive scores. Furthermore, we conducted comparisons between the distributions of real and synthetic data using Kolmogorov-Smirnov and Chi-square statistical tests, focusing respectively on covariate and output variables of the models. Lastly, we employed pharmacometrics-related metric to enhance interpretation of our results specific to our investigated scenarios. Results indicate that multi-layer perceptron-based conditional generative adversarial networks (MLP cGAN) exhibit the best overall performance for most of the considered metrics. This work highlights the opportunities to employ synthetic data generation in the field of clinical pharmacology for augmentation and sharing of proprietary data across institutions.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"877-885"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09935-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The generation of synthetic patient data that reflect the statistical properties of real data plays a fundamental role in today's world because of its potential to (i) be enable proprietary data access for statistical and research purposes and (ii) increase available data (e.g., in low-density regions-i.e., for patients with under-represented characteristics). Generative methods employ a family of solutions for generating synthetic data. The objective of this research is to benchmark numerous state-of-the-art deep-learning generative methods across different scenarios and clinical datasets comprising patient covariates and several pharmacokinetic/pharmacodynamic endpoints. We did this by implementing various probabilistic models aimed at generating synthetic data, such as the Multi-layer Perceptron Conditioning Generative Adversarial Neural Network (MLP cGAN), Time-series Generative Adversarial Networks (TimeGAN), and a more traditional approach like Probabilistic Autoregressive (PAR). We evaluated their performance by calculating discriminative and predictive scores. Furthermore, we conducted comparisons between the distributions of real and synthetic data using Kolmogorov-Smirnov and Chi-square statistical tests, focusing respectively on covariate and output variables of the models. Lastly, we employed pharmacometrics-related metric to enhance interpretation of our results specific to our investigated scenarios. Results indicate that multi-layer perceptron-based conditional generative adversarial networks (MLP cGAN) exhibit the best overall performance for most of the considered metrics. This work highlights the opportunities to employ synthetic data generation in the field of clinical pharmacology for augmentation and sharing of proprietary data across institutions.

Abstract Image

合成数据生成模型:应用于药代动力学/药效学数据。
生成能反映真实数据统计特性的合成患者数据在当今世界发挥着重要作用,因为它具有以下潜力:(i) 为统计和研究目的提供专有数据访问;(ii) 增加可用数据(例如,在低密度地区,即具有代表性不足特征的患者)。生成方法采用一系列解决方案来生成合成数据。本研究的目的是在不同场景和临床数据集(包括患者协变量和多个药代动力学/药效学终点)中对众多最先进的深度学习生成方法进行基准测试。为此,我们实施了各种旨在生成合成数据的概率模型,如多层感知器条件生成对抗神经网络(MLP cGAN)、时间序列生成对抗网络(TimeGAN),以及更传统的方法,如概率自回归(PAR)。我们通过计算判别和预测分数来评估它们的性能。此外,我们还使用 Kolmogorov-Smirnov 和 Chi-square 统计检验对真实数据和合成数据的分布进行了比较,分别侧重于模型的协变量和输出变量。最后,我们采用了药物计量学相关指标,以加强对我们所研究情景的特定结果的解释。结果表明,基于多层感知器的条件生成式对抗网络(MLP cGAN)在所考虑的大多数指标中表现出最佳的整体性能。这项工作凸显了在临床药理学领域采用合成数据生成技术来增强和共享各机构专有数据的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信