{"title":"Physiological roles of Arabidopsis MCA1 and MCA2 based on their dynamic expression patterns.","authors":"Miki Kubota, Kendo Mori, Hidetoshi Iida","doi":"10.1007/s10265-024-01575-8","DOIUrl":null,"url":null,"abstract":"<p><p>Determining the mechanisms by which plants sense and respond to mechanical stimuli is crucial for unraveling the detailed processes by which plants grow and develop. Mechanosensitive (MS) channels, including MCA1 and its paralog MCA2 in Arabidopsis thaliana, may be essential for these processes. Although significant progress has been made in elucidating the physiological roles of MS channels, comprehensive insights into their expression dynamics remain elusive. Here, we summarize recent advancements and new data on the spatiotemporal expression patterns of the MCA1 and MCA2 genes, revealing their involvement in various developmental processes. Then, we describe findings from our study, in which the expression profiles of MCA1 and MCA2 were characterized in different plant organs at various developmental stages through histochemical analyses and semiquantitative RT‒PCR. Our findings revealed that MCA1 and MCA2 are preferentially expressed in young tissues, suggesting their pivotal roles in processes such as cell division, expansion, and mechanosensing. Lastly, we discuss the differential expression patterns observed in reproductive organs and trichomes, hinting at their specialized functions in response to mechanical cues. Overall, this review provides valuable insights into the dynamic expression patterns of MCA1 and MCA2, paving the way for future research on the precise roles of these genes in planta.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"785-797"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393015/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01575-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Determining the mechanisms by which plants sense and respond to mechanical stimuli is crucial for unraveling the detailed processes by which plants grow and develop. Mechanosensitive (MS) channels, including MCA1 and its paralog MCA2 in Arabidopsis thaliana, may be essential for these processes. Although significant progress has been made in elucidating the physiological roles of MS channels, comprehensive insights into their expression dynamics remain elusive. Here, we summarize recent advancements and new data on the spatiotemporal expression patterns of the MCA1 and MCA2 genes, revealing their involvement in various developmental processes. Then, we describe findings from our study, in which the expression profiles of MCA1 and MCA2 were characterized in different plant organs at various developmental stages through histochemical analyses and semiquantitative RT‒PCR. Our findings revealed that MCA1 and MCA2 are preferentially expressed in young tissues, suggesting their pivotal roles in processes such as cell division, expansion, and mechanosensing. Lastly, we discuss the differential expression patterns observed in reproductive organs and trichomes, hinting at their specialized functions in response to mechanical cues. Overall, this review provides valuable insights into the dynamic expression patterns of MCA1 and MCA2, paving the way for future research on the precise roles of these genes in planta.
期刊介绍:
The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology.
The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.