Versatile cell cultivation on injectable poly(butylene adipate-co-terephthalate) microcarriers: Impact of surface properties across different cell types
{"title":"Versatile cell cultivation on injectable poly(butylene adipate-co-terephthalate) microcarriers: Impact of surface properties across different cell types","authors":"Sena Koç, Menemşe Gümüşderelioğlu","doi":"10.1002/jbm.b.35464","DOIUrl":null,"url":null,"abstract":"<p>Injectable cell therapies offer several advantages compared with traditional open surgery, including less trauma to the patient, shorter recovery time, and lower risk of infection. However, a significant problem is the difficulty in developing effective cell delivery carriers that are cyto-compatible and maintain cell viability both during and after injection. In the presented study, it was aimed to develop poly(butylene adipate-co-terephthalate) (PBAT) microcarriers using the emulsion preparation-solvent evaporation technique. The optimized diameter of the PBAT microcarriers was determined as 104 ± 15 μm at 700 rpm and there would be no blockage after injection due to the nonswelling feature of microcarriers. Furthermore, the cellular activities of PBAT microcarriers were evaluated in static culture for 7 days using L929 mouse fibroblasts, MC3T3-E1 mouse pre-osteoblasts, and rat adipose-derived mesenchymal cells (AdMSCs). 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide results and Sscanning electron microscope images showed that PBAT microcarriers increased the adhesion and proliferation properties of pre-osteoblasts and stem cells, while L929 fibroblasts formed aggregates by adhering to certain regions of the microcarrier surface and did not spread on the surface. These results emphasize that PBAT microcarriers can be used as injectable carriers, especially in stem cell therapies, but their surface properties need to be modified for some cells.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35464","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35464","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Injectable cell therapies offer several advantages compared with traditional open surgery, including less trauma to the patient, shorter recovery time, and lower risk of infection. However, a significant problem is the difficulty in developing effective cell delivery carriers that are cyto-compatible and maintain cell viability both during and after injection. In the presented study, it was aimed to develop poly(butylene adipate-co-terephthalate) (PBAT) microcarriers using the emulsion preparation-solvent evaporation technique. The optimized diameter of the PBAT microcarriers was determined as 104 ± 15 μm at 700 rpm and there would be no blockage after injection due to the nonswelling feature of microcarriers. Furthermore, the cellular activities of PBAT microcarriers were evaluated in static culture for 7 days using L929 mouse fibroblasts, MC3T3-E1 mouse pre-osteoblasts, and rat adipose-derived mesenchymal cells (AdMSCs). 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide results and Sscanning electron microscope images showed that PBAT microcarriers increased the adhesion and proliferation properties of pre-osteoblasts and stem cells, while L929 fibroblasts formed aggregates by adhering to certain regions of the microcarrier surface and did not spread on the surface. These results emphasize that PBAT microcarriers can be used as injectable carriers, especially in stem cell therapies, but their surface properties need to be modified for some cells.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.