{"title":"Ginsenoside RD prevents acute liver injury in mice by inhibiting STAT3-mediated NLRP3/GSDMD activation","authors":"Wenyan Li, Yun Kong, Caiqun Zhang","doi":"10.1002/jbt.23825","DOIUrl":null,"url":null,"abstract":"<p>We investigated the role and mechanism of ginsenoside RD (GRD) in acute liver injury. Network pharmacology was used to analyze the correlations among GRD-liver injury-pyroptosis targets. A mouse model of acute liver injury was established by lipopolysaccharide + <span>d</span>-galactose(LPS + <span>d</span>/Gal). After pretreatment with GRD, the changes in mouse liver function were detected. The histopathological changes were assayed by hematoxylin and eosin and Masson staining, the tissue expressions of inflammatory cytokines were detected by enzyme-linked immunosorbent assay, and the protein expressions were assayed by immunohistochemical staining and Western blotting. Meanwhile, mechanism research was conducted using STAT3-knockout transgenic mice and STAT3-IN13, a STAT3 inhibitor. GRD inhibited liver injury, mitigated tissue inflammation, and suppressed STAT3-mediated pyroptosis in mice. After applying STAT3-knockout mouse model or STAT3-IN13, GRD did not further inhibit the liver injury. GRD can resist liver injury by inhibiting the STAT3-mediated pyroptosis, which is one of the hepatoprotective mechanisms of GRD.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23825","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the role and mechanism of ginsenoside RD (GRD) in acute liver injury. Network pharmacology was used to analyze the correlations among GRD-liver injury-pyroptosis targets. A mouse model of acute liver injury was established by lipopolysaccharide + d-galactose(LPS + d/Gal). After pretreatment with GRD, the changes in mouse liver function were detected. The histopathological changes were assayed by hematoxylin and eosin and Masson staining, the tissue expressions of inflammatory cytokines were detected by enzyme-linked immunosorbent assay, and the protein expressions were assayed by immunohistochemical staining and Western blotting. Meanwhile, mechanism research was conducted using STAT3-knockout transgenic mice and STAT3-IN13, a STAT3 inhibitor. GRD inhibited liver injury, mitigated tissue inflammation, and suppressed STAT3-mediated pyroptosis in mice. After applying STAT3-knockout mouse model or STAT3-IN13, GRD did not further inhibit the liver injury. GRD can resist liver injury by inhibiting the STAT3-mediated pyroptosis, which is one of the hepatoprotective mechanisms of GRD.