Hyaluronidase overcomes the extracellular matrix barrier to enhance local drug delivery

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Jingru Zhao, Jing Chen, Changqing Li, Hong Xiang, Xiaoqing Miao
{"title":"Hyaluronidase overcomes the extracellular matrix barrier to enhance local drug delivery","authors":"Jingru Zhao,&nbsp;Jing Chen,&nbsp;Changqing Li,&nbsp;Hong Xiang,&nbsp;Xiaoqing Miao","doi":"10.1016/j.ejpb.2024.114474","DOIUrl":null,"url":null,"abstract":"<div><p>The stratum corneum of the skin presents the initial barrier to transdermal penetration. The dense structure of the extracellular matrix (ECM) further impedes local drug dispersion. Hyaluronidase (HAase) is a key component for the degradation of glycosidic bonding sites in hyaluronic acid (HA) within the ECM to overcome this barrier and enhance drug dispersion. HAase activity is optimal at 37–45 °C and in the pH range 4.5–5.5. Numerous FDA-approved formulations are available for the clinical treatment of extravasation and other diseases. HAase combined with various new nanoformulations can markedly improve intradermal dispersion. By degrading HA to create tiny channels that reduce the ECM density, these small nanoformulations then use these channels to deliver drugs to deeper layers of the skin. This deep penetration may increase local drug concentration or facilitate penetration into the blood or lymphatic circulation. Based on the generalization of 114 studies from 2010 to 2024, this article summarizes the most recent strategies to overcome the HAase-based ECM barrier for local drug delivery, discusses opportunities and challenges in clinical applications, and provides references for the future development of HAase. In the future, HAase-assisted topical administration is necessary to achieve systemic effects and to standardize HAase application protocols.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"203 ","pages":"Article 114474"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S093964112400300X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The stratum corneum of the skin presents the initial barrier to transdermal penetration. The dense structure of the extracellular matrix (ECM) further impedes local drug dispersion. Hyaluronidase (HAase) is a key component for the degradation of glycosidic bonding sites in hyaluronic acid (HA) within the ECM to overcome this barrier and enhance drug dispersion. HAase activity is optimal at 37–45 °C and in the pH range 4.5–5.5. Numerous FDA-approved formulations are available for the clinical treatment of extravasation and other diseases. HAase combined with various new nanoformulations can markedly improve intradermal dispersion. By degrading HA to create tiny channels that reduce the ECM density, these small nanoformulations then use these channels to deliver drugs to deeper layers of the skin. This deep penetration may increase local drug concentration or facilitate penetration into the blood or lymphatic circulation. Based on the generalization of 114 studies from 2010 to 2024, this article summarizes the most recent strategies to overcome the HAase-based ECM barrier for local drug delivery, discusses opportunities and challenges in clinical applications, and provides references for the future development of HAase. In the future, HAase-assisted topical administration is necessary to achieve systemic effects and to standardize HAase application protocols.

Abstract Image

透明质酸酶能克服细胞外基质屏障,加强局部给药。
皮肤角质层是透皮渗透的第一道屏障。细胞外基质(ECM)的致密结构进一步阻碍了药物在局部的分散。透明质酸酶(HAase)是降解细胞外基质中透明质酸(HA)糖苷键位点的关键成分,可克服这一障碍并提高药物分散性。HA 酶在 37-45 °C 和 4.5-5.5 的 pH 值范围内具有最佳活性。美国食品及药物管理局(FDA)批准了大量配方,用于外渗和其他疾病的临床治疗。HAase 与各种新型纳米制剂相结合,可显著改善皮内分散。这些小型纳米制剂通过降解 HA 形成微小通道,降低 ECM 密度,然后利用这些通道将药物输送到皮肤深层。这种深层渗透可提高局部药物浓度,或促进药物进入血液或淋巴循环。本文在归纳 2010 年至 2024 年 115 项研究的基础上,总结了克服基于 HAase 的 ECM 屏障进行局部给药的最新策略,讨论了临床应用中的机遇和挑战,并为 HAase 的未来发展提供了参考。未来,HAase 辅助局部给药对实现全身效果和规范 HAase 应用方案十分必要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信