{"title":"OTUD6B promotes cholangiocarcinoma growth by regulating STAT3 phosphorylation through deubiquitination of PTK2","authors":"Guoqiang Xing, Hekai Chen, Zhiyue Guo, Yu Cui, Yongyuan Li, Jianwei Shen","doi":"10.1002/cbin.12234","DOIUrl":null,"url":null,"abstract":"<p>Cholangiocarcinoma (CCA) is a hepatobiliary carcinoma with uncontrolled cell proliferation, poor prognosis, and high mortality. The ovarian tumor structural domain (OTU) containing protein 6B (OTUD6B) belongs to the OTU deubiquitin family and is vital in tumor development. However, its expression and biological function in CCA remain unknown. The expression of OTUD6B in CCA was analyzed using TIMER2.0, UALCAN, and GEO databases. MTT, clonal formation assay, immunofluorescence staining, immunohistochemistry staining, and flow cytometry examined the regulation of OTUD6B on cell proliferation, cycle, and apoptosis. The effects of OTUD6B on tumor volume and weight were assessed using the xenograft tumor model. The activities of PTK2 and STAT3 were detected by western blot and CO-IP. The biological database identified that OTUD6B was upregulated in CCA. In CCA cells, OTUD6B knockdown reduced CCA cell proliferation and promoted apoptosis. Cell cycle analysis indicated that the cycle stopped at the G0/G1 phase after OTU6B downregulation. Furthermore, OTUD6B knockdown resulted in a decrease in tumor volume and weight in xenograft tumor models. Mechanistically, OTUD6B is involved in the deubiquitination of PTK2. PTK2 further affected the phosphorylation of STAT3 thereby regulating the CCA process. Our study demonstrates that OTUD6B knockdown participates in the ubiquitination of PTK2 and phosphorylation of STAT3 to alleviate the process of CCA. These results suggest that OTUD6B may be a potential new strategy for CCA treatment.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1766-1778"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12234","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cholangiocarcinoma (CCA) is a hepatobiliary carcinoma with uncontrolled cell proliferation, poor prognosis, and high mortality. The ovarian tumor structural domain (OTU) containing protein 6B (OTUD6B) belongs to the OTU deubiquitin family and is vital in tumor development. However, its expression and biological function in CCA remain unknown. The expression of OTUD6B in CCA was analyzed using TIMER2.0, UALCAN, and GEO databases. MTT, clonal formation assay, immunofluorescence staining, immunohistochemistry staining, and flow cytometry examined the regulation of OTUD6B on cell proliferation, cycle, and apoptosis. The effects of OTUD6B on tumor volume and weight were assessed using the xenograft tumor model. The activities of PTK2 and STAT3 were detected by western blot and CO-IP. The biological database identified that OTUD6B was upregulated in CCA. In CCA cells, OTUD6B knockdown reduced CCA cell proliferation and promoted apoptosis. Cell cycle analysis indicated that the cycle stopped at the G0/G1 phase after OTU6B downregulation. Furthermore, OTUD6B knockdown resulted in a decrease in tumor volume and weight in xenograft tumor models. Mechanistically, OTUD6B is involved in the deubiquitination of PTK2. PTK2 further affected the phosphorylation of STAT3 thereby regulating the CCA process. Our study demonstrates that OTUD6B knockdown participates in the ubiquitination of PTK2 and phosphorylation of STAT3 to alleviate the process of CCA. These results suggest that OTUD6B may be a potential new strategy for CCA treatment.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.