Next-generation BCMA-targeted chimeric antigen receptor CARTemis-1: the impact of manufacturing procedure on CAR T-cell features.

IF 6.6 2区 医学 Q1 Medicine
Belén Sierro-Martínez, Virginia Escamilla-Gómez, Laura Pérez-Ortega, Beatriz Guijarro-Albaladejo, Paola Hernández-Díaz, María de la Rosa-Garrido, Maribel Lara-Chica, Alfonso Rodríguez-Gil, Juan Luis Reguera-Ortega, Luzalba Sanoja-Flores, Blanca Arribas-Arribas, Miguel Ángel Montiel-Aguilera, Gloria Carmona, Maria Jose Robles, Teresa Caballero-Velázquez, Javier Briones, Hermann Einsele, Michael Hudecek, Jose Antonio Pérez-Simón, Estefanía García-Guerrero
{"title":"Next-generation BCMA-targeted chimeric antigen receptor CARTemis-1: the impact of manufacturing procedure on CAR T-cell features.","authors":"Belén Sierro-Martínez, Virginia Escamilla-Gómez, Laura Pérez-Ortega, Beatriz Guijarro-Albaladejo, Paola Hernández-Díaz, María de la Rosa-Garrido, Maribel Lara-Chica, Alfonso Rodríguez-Gil, Juan Luis Reguera-Ortega, Luzalba Sanoja-Flores, Blanca Arribas-Arribas, Miguel Ángel Montiel-Aguilera, Gloria Carmona, Maria Jose Robles, Teresa Caballero-Velázquez, Javier Briones, Hermann Einsele, Michael Hudecek, Jose Antonio Pérez-Simón, Estefanía García-Guerrero","doi":"10.1007/s13402-024-00984-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>CAR therapy targeting BCMA is under investigation as treatment for multiple myeloma. However, given the lack of plateau in most studies, pursuing more effective alternatives is imperative. We present the preclinical and clinical validation of a new optimized anti-BCMA CAR (CARTemis-1). In addition, we explored how the manufacturing process could impact CAR-T cell product quality and fitness.</p><p><strong>Methods: </strong>CARTemis-1 optimizations were evaluated at the preclinical level both, in vitro and in vivo. CARTemis-1 generation was validated under GMP conditions, studying the dynamics of the immunophenotype from leukapheresis to final product. Here, we studied the impact of the manufacturing process on CAR-T cells to define optimal cell culture protocol and expansion time to increase product fitness.</p><p><strong>Results: </strong>Two different versions of CARTemis-1 with different spacers were compared. The longer version showed increased cytotoxicity. The incorporation of the safety-gene EGFRt into the CARTemis-1 structure can be used as a monitoring marker. CARTemis-1 showed no inhibition by soluble BCMA and presents potent antitumor effects both in vitro and in vivo. Expansion with IL-2 or IL-7/IL-15 was compared, revealing greater proliferation, less differentiation, and less exhaustion with IL-7/IL-15. Three consecutive batches of CARTemis-1 were produced under GMP guidelines meeting all the required specifications. CARTemis-1 cells manufactured under GMP conditions showed increased memory subpopulations, reduced exhaustion markers and selective antitumor efficacy against MM cell lines and primary myeloma cells. The optimal release time points for obtaining the best fit product were > 6 and < 10 days (days 8-10).</p><p><strong>Conclusions: </strong>CARTemis-1 has been rationally designed to increase antitumor efficacy, overcome sBCMA inhibition, and incorporate the expression of a safety-gene. The generation of CARTemis-1 was successfully validated under GMP standards. A phase I/II clinical trial for patients with multiple myeloma will be conducted (EuCT number 2022-503063-15-00).</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-00984-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: CAR therapy targeting BCMA is under investigation as treatment for multiple myeloma. However, given the lack of plateau in most studies, pursuing more effective alternatives is imperative. We present the preclinical and clinical validation of a new optimized anti-BCMA CAR (CARTemis-1). In addition, we explored how the manufacturing process could impact CAR-T cell product quality and fitness.

Methods: CARTemis-1 optimizations were evaluated at the preclinical level both, in vitro and in vivo. CARTemis-1 generation was validated under GMP conditions, studying the dynamics of the immunophenotype from leukapheresis to final product. Here, we studied the impact of the manufacturing process on CAR-T cells to define optimal cell culture protocol and expansion time to increase product fitness.

Results: Two different versions of CARTemis-1 with different spacers were compared. The longer version showed increased cytotoxicity. The incorporation of the safety-gene EGFRt into the CARTemis-1 structure can be used as a monitoring marker. CARTemis-1 showed no inhibition by soluble BCMA and presents potent antitumor effects both in vitro and in vivo. Expansion with IL-2 or IL-7/IL-15 was compared, revealing greater proliferation, less differentiation, and less exhaustion with IL-7/IL-15. Three consecutive batches of CARTemis-1 were produced under GMP guidelines meeting all the required specifications. CARTemis-1 cells manufactured under GMP conditions showed increased memory subpopulations, reduced exhaustion markers and selective antitumor efficacy against MM cell lines and primary myeloma cells. The optimal release time points for obtaining the best fit product were > 6 and < 10 days (days 8-10).

Conclusions: CARTemis-1 has been rationally designed to increase antitumor efficacy, overcome sBCMA inhibition, and incorporate the expression of a safety-gene. The generation of CARTemis-1 was successfully validated under GMP standards. A phase I/II clinical trial for patients with multiple myeloma will be conducted (EuCT number 2022-503063-15-00).

Abstract Image

下一代 BCMA 靶向嵌合抗原受体 CARTemis-1:制造过程对 CAR T 细胞特征的影响。
目的:作为多发性骨髓瘤的治疗方法,以 BCMA 为靶点的 CAR 疗法正在接受研究。然而,由于大多数研究都缺乏高原效应,因此寻求更有效的替代疗法势在必行。我们介绍了一种新型优化抗 BCMA CAR(CARTemis-1)的临床前和临床验证。此外,我们还探讨了生产过程如何影响 CAR-T 细胞产品质量和适用性:方法:我们在体外和体内对 CARTemis-1 的临床前优化进行了评估。在 GMP 条件下验证了 CARTemis-1 的生成,研究了从白细胞分离到最终产品的免疫表型动态。在此,我们研究了生产过程对 CAR-T 细胞的影响,以确定最佳细胞培养方案和扩增时间,从而提高产品的适应性:结果:我们比较了带有不同间隔的两种不同版本的 CARTemis-1。结果:比较了带有不同间隔物的两种不同版本的CARTemis-1。在 CARTemis-1 结构中加入安全基因 EGFRt 可用作监测标记。CARTemis-1没有受到可溶性BCMA的抑制,在体外和体内都有很强的抗肿瘤作用。通过比较 IL-2 或 IL-7/IL-15 的扩增效果,发现 IL-7/IL-15 的扩增效果更好,分化更少,耗竭更少。连续三批 CARTemis-1 都是在 GMP 指导下生产的,符合所有要求的规格。在 GMP 条件下生产的 CARTemis-1 细胞显示出记忆亚群增加、衰竭标志物减少以及对 MM 细胞系和原发性骨髓瘤细胞的选择性抗肿瘤功效。获得最佳产品的最佳释放时间点大于 6 和结论:CARTemis-1 经过合理设计,提高了抗肿瘤疗效,克服了 sBCMA 抑制作用,并加入了安全基因的表达。CARTemis-1 的生产成功通过了 GMP 标准的验证。将对多发性骨髓瘤患者进行 I/II 期临床试验(EuCT 编号 2022-503063-15-00)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular Oncology
Cellular Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
10.40
自引率
1.50%
发文量
0
审稿时长
16 weeks
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信