Optimizing protein sequence classification: integrating deep learning models with Bayesian optimization for enhanced biological analysis.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Umesh Kumar Lilhore, Sarita Simiaya, Musaed Alhussein, Neetu Faujdar, Surjeet Dalal, Khursheed Aurangzeb
{"title":"Optimizing protein sequence classification: integrating deep learning models with Bayesian optimization for enhanced biological analysis.","authors":"Umesh Kumar Lilhore, Sarita Simiaya, Musaed Alhussein, Neetu Faujdar, Surjeet Dalal, Khursheed Aurangzeb","doi":"10.1186/s12911-024-02631-y","DOIUrl":null,"url":null,"abstract":"<p><p>Efforts to enhance the accuracy of protein sequence classification are of utmost importance in driving forward biological analyses and facilitating significant medical advancements. This study presents a cutting-edge model called ProtICNN-BiLSTM, which combines attention-based Improved Convolutional Neural Networks (ICNN) and Bidirectional Long Short-Term Memory (BiLSTM) units seamlessly. Our main goal is to improve the accuracy of protein sequence classification by carefully optimizing performance through Bayesian Optimisation. ProtICNN-BiLSTM combines the power of CNN and BiLSTM architectures to effectively capture local and global protein sequence dependencies. In the proposed model, the ICNN component uses convolutional operations to identify local patterns. Captures long-range associations by analyzing sequence data forward and backwards. In advanced biological studies, Bayesian Optimisation optimizes model hyperparameters for efficiency and robustness. The model was extensively confirmed with PDB-14,189 and other protein data. We found that ProtICNN-BiLSTM outperforms traditional categorization models. Bayesian Optimization's fine-tuning and seamless integration of local and global sequence information make it effective. The precision of ProtICNN-BiLSTM improves comparative protein sequence categorization. The study improves computational bioinformatics for complex biological analysis. Good results from the ProtICNN-BiLSTM model improve protein sequence categorization. This powerful tool could improve medical and biological research. The breakthrough protein sequence classification model is ProtICNN-BiLSTM. Bayesian optimization, ICNN, and BiLSTM analyze biological data accurately.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351277/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02631-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Efforts to enhance the accuracy of protein sequence classification are of utmost importance in driving forward biological analyses and facilitating significant medical advancements. This study presents a cutting-edge model called ProtICNN-BiLSTM, which combines attention-based Improved Convolutional Neural Networks (ICNN) and Bidirectional Long Short-Term Memory (BiLSTM) units seamlessly. Our main goal is to improve the accuracy of protein sequence classification by carefully optimizing performance through Bayesian Optimisation. ProtICNN-BiLSTM combines the power of CNN and BiLSTM architectures to effectively capture local and global protein sequence dependencies. In the proposed model, the ICNN component uses convolutional operations to identify local patterns. Captures long-range associations by analyzing sequence data forward and backwards. In advanced biological studies, Bayesian Optimisation optimizes model hyperparameters for efficiency and robustness. The model was extensively confirmed with PDB-14,189 and other protein data. We found that ProtICNN-BiLSTM outperforms traditional categorization models. Bayesian Optimization's fine-tuning and seamless integration of local and global sequence information make it effective. The precision of ProtICNN-BiLSTM improves comparative protein sequence categorization. The study improves computational bioinformatics for complex biological analysis. Good results from the ProtICNN-BiLSTM model improve protein sequence categorization. This powerful tool could improve medical and biological research. The breakthrough protein sequence classification model is ProtICNN-BiLSTM. Bayesian optimization, ICNN, and BiLSTM analyze biological data accurately.

优化蛋白质序列分类:将深度学习模型与贝叶斯优化相结合,增强生物分析能力。
努力提高蛋白质序列分类的准确性对于推动生物分析和促进重大医学进步至关重要。本研究提出了一种名为 ProtICNN-BiLSTM 的前沿模型,它将基于注意力的改进卷积神经网络(ICNN)和双向长短期记忆(BiLSTM)单元完美地结合在一起。我们的主要目标是通过贝叶斯优化技术精心优化性能,提高蛋白质序列分类的准确性。ProtICNN-BiLSTM 结合了 CNN 和 BiLSTM 架构的强大功能,能有效捕捉局部和全局的蛋白质序列依赖关系。在提议的模型中,ICNN 组件使用卷积运算来识别局部模式。通过正向和反向分析序列数据,捕捉长程关联。在高级生物学研究中,贝叶斯优化法(Bayesian Optimisation)可优化模型超参数,以提高效率和鲁棒性。我们利用 PDB-14,189 和其他蛋白质数据对该模型进行了广泛验证。我们发现,ProtICNN-BiLSTM 优于传统的分类模型。贝叶斯优化的微调和局部与全局序列信息的无缝整合使其非常有效。ProtICNN-BiLSTM 的精确度提高了蛋白质序列的比较分类。这项研究改进了复杂生物分析中的计算生物信息学。ProtICNN-BiLSTM 模型的良好结果改进了蛋白质序列分类。这一强大的工具可以改善医学和生物学研究。具有突破性的蛋白质序列分类模型是 ProtICNN-BiLSTM。贝叶斯优化、ICNN 和 BiLSTM 可精确分析生物数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信