Soft Gripping Fingers Made of Multi-Stacked Dielectric Elastomer Actuators with Backbone Strategy.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Armin Jamali, Robert Knoerlein, Dushyant Bhagwan Mishra, Seyed Alireza Sheikholeslami, Peter Woias, Frank Goldschmidtboeing
{"title":"Soft Gripping Fingers Made of Multi-Stacked Dielectric Elastomer Actuators with Backbone Strategy.","authors":"Armin Jamali, Robert Knoerlein, Dushyant Bhagwan Mishra, Seyed Alireza Sheikholeslami, Peter Woias, Frank Goldschmidtboeing","doi":"10.3390/biomimetics9080505","DOIUrl":null,"url":null,"abstract":"<p><p>Soft grippers, a rapidly growing subfield of soft robotics, utilize compliant and flexible materials capable of conforming to various shapes. This feature enables them to exert gentle yet, if required, strong gripping forces. In this study, we elaborate on the material selection and fabrication process of gripping fingers based on the dielectric elastomer actuation technique. We study the effects of mixing the silicone elastomer with a silicone thinner on the performance of the actuators. Inspired by nature, where the motion of end-effectors such as soft limbs or fingers is, in many cases, directed by a stiff skeleton, we utilize backbones for translating the planar actuation into a bending motion. Thus, the finger does not need any rigid frame or pre-stretch, as in many other DEA approaches. The idea and function of the backbone strategy are demonstrated by finite element method simulations with COMSOL Multiphysics<sup>®</sup> 6.5. The paper describes the full methodology from material choice and characterization, design, and simulation to characterization to enable future developments based on our approach. Finally, we present the performance of these actuators in a gripper demonstrator setup. The developed actuators bend up to 68.3° against gravity, and the gripper fingers hold up to 10.3 g against gravity under an actuation voltage of 8 kV.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9080505","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soft grippers, a rapidly growing subfield of soft robotics, utilize compliant and flexible materials capable of conforming to various shapes. This feature enables them to exert gentle yet, if required, strong gripping forces. In this study, we elaborate on the material selection and fabrication process of gripping fingers based on the dielectric elastomer actuation technique. We study the effects of mixing the silicone elastomer with a silicone thinner on the performance of the actuators. Inspired by nature, where the motion of end-effectors such as soft limbs or fingers is, in many cases, directed by a stiff skeleton, we utilize backbones for translating the planar actuation into a bending motion. Thus, the finger does not need any rigid frame or pre-stretch, as in many other DEA approaches. The idea and function of the backbone strategy are demonstrated by finite element method simulations with COMSOL Multiphysics® 6.5. The paper describes the full methodology from material choice and characterization, design, and simulation to characterization to enable future developments based on our approach. Finally, we present the performance of these actuators in a gripper demonstrator setup. The developed actuators bend up to 68.3° against gravity, and the gripper fingers hold up to 10.3 g against gravity under an actuation voltage of 8 kV.

采用骨干策略的多叠层介电弹性体致动器制成的软抓手
软抓手是软机器人技术中发展迅速的一个子领域,它利用能够适应各种形状的顺应性和柔性材料。这一特点使它们能够施加温和但强大的抓取力(如果需要)。在本研究中,我们详细阐述了基于介电弹性体驱动技术的抓手的材料选择和制造过程。我们还研究了硅树脂弹性体与硅树脂稀释剂混合对致动器性能的影响。在自然界中,软肢或手指等末端执行器的运动在很多情况下是由坚硬的骨架引导的,受此启发,我们利用骨架将平面致动器转化为弯曲运动。因此,手指不需要任何刚性框架或预拉伸,就像许多其他 DEA 方法一样。利用 COMSOL Multiphysics® 6.5 进行的有限元法模拟证明了骨干策略的理念和功能。本文介绍了从材料选择和表征、设计、仿真到表征的全部方法,以便未来根据我们的方法进行开发。最后,我们介绍了这些致动器在机械手演示装置中的性能。在 8 kV 的致动电压下,所开发的致动器可在重力作用下弯曲 68.3°,抓手手指可在重力作用下保持 10.3 g 的重量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信