Faith Summers , Amber M. Tuske , Cassandra Puglisi , Annie Wong , Andrés Rojo , Lindsey Swierk
{"title":"Ambient light spectrum affects larval Mexican jumping bean moth (Cydia saltitans) behavior despite light obstruction from host seed","authors":"Faith Summers , Amber M. Tuske , Cassandra Puglisi , Annie Wong , Andrés Rojo , Lindsey Swierk","doi":"10.1016/j.beproc.2024.105093","DOIUrl":null,"url":null,"abstract":"<div><p>Spectral differences in ambient light can affect animal behavior and convey crucial information about an individual’s environment. The ability to perceive and respond to differences in ambient light varies widely by taxa and is shaped by a species’ ecology. Mexican jumping bean moths, <em>Cydia saltitans</em>, spend their entire larval period encased in fallen host seeds and contend with potentially lethal environmental temperatures when host seeds are in direct sunlight. We investigate if and how <em>C. saltitans</em> larvae in host seeds respond to lighting conditions associated with these thermal risks. In a temperature-controlled experiment, we identified that larvae demonstrated distinct behavioral (“jumping”) responses corresponding to four lighting treatments (white, red, green, and purple), despite extremely minimal light penetration through host seed walls. Red light induced the greatest larval activity (measured by probability of movement and by displacement from origin), suggesting that larvae have mechanisms to perceive low levels of red light and/or to detect subtle increases in heat produced by red/near infrared-biased light spectra, possibly providing them with an early-warning mechanism against thermal stress. Our findings highlight the interplay of environmental lighting, behavior, and potential thermosensory adaptations in a species with a visually constrained environment.</p></div>","PeriodicalId":8746,"journal":{"name":"Behavioural Processes","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Processes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376635724001086","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spectral differences in ambient light can affect animal behavior and convey crucial information about an individual’s environment. The ability to perceive and respond to differences in ambient light varies widely by taxa and is shaped by a species’ ecology. Mexican jumping bean moths, Cydia saltitans, spend their entire larval period encased in fallen host seeds and contend with potentially lethal environmental temperatures when host seeds are in direct sunlight. We investigate if and how C. saltitans larvae in host seeds respond to lighting conditions associated with these thermal risks. In a temperature-controlled experiment, we identified that larvae demonstrated distinct behavioral (“jumping”) responses corresponding to four lighting treatments (white, red, green, and purple), despite extremely minimal light penetration through host seed walls. Red light induced the greatest larval activity (measured by probability of movement and by displacement from origin), suggesting that larvae have mechanisms to perceive low levels of red light and/or to detect subtle increases in heat produced by red/near infrared-biased light spectra, possibly providing them with an early-warning mechanism against thermal stress. Our findings highlight the interplay of environmental lighting, behavior, and potential thermosensory adaptations in a species with a visually constrained environment.
期刊介绍:
Behavioural Processes is dedicated to the publication of high-quality original research on animal behaviour from any theoretical perspective. It welcomes contributions that consider animal behaviour from behavioural analytic, cognitive, ethological, ecological and evolutionary points of view. This list is not intended to be exhaustive, and papers that integrate theory and methodology across disciplines are particularly welcome.