Phase Engineering of ZnSe by Small Molecules as a High-Performance Protective Layer for Zn Anode

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-08-27 DOI:10.1002/cssc.202401287
Yanan Guo, Miaomiao Zhang, Ping Yan, Longtai Jiang, Anqi Dong, Xin-Yao Yu
{"title":"Phase Engineering of ZnSe by Small Molecules as a High-Performance Protective Layer for Zn Anode","authors":"Yanan Guo,&nbsp;Miaomiao Zhang,&nbsp;Ping Yan,&nbsp;Longtai Jiang,&nbsp;Anqi Dong,&nbsp;Xin-Yao Yu","doi":"10.1002/cssc.202401287","DOIUrl":null,"url":null,"abstract":"<p>The practical application of aqueous zinc ion batteries is still hampered by the side reactions and dendrite growth on Zn anode. Herein, the phase engineering of ZnSe coating layer by incorporating small molecules is developed to enhance the performance of Zn anode. The unique electronic structure of ZnSe⋅0.5N<sub>2</sub>H<sub>4</sub> promises strong adsorption for Zn atoms and enhanced ability to inhibit hydrogen evolution, thereby promoting uniform Zn deposition and preventing by-product and dendrite growth. Meanwhile, fast Zn<sup>2+</sup> transfer and deposition kinetics are also demonstrated by ZnSe⋅0.5N<sub>2</sub>H<sub>4</sub>. As a result, the ZnSe⋅0.5N<sub>2</sub>H<sub>4</sub>@Zn symmetric cell achieves long-term cycling stability up to 1900 h and 300 h at high current densities of 5 mA cm<sup>−2</sup> and 20 mA cm<sup>−2</sup>, respectively. The assembled ZnSe⋅0.5N<sub>2</sub>H<sub>4</sub>@Zn||NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> full cell presents outstanding cycling stability and rate capability. This work highlights the key role of crystal phase control of protective layer for high-performance zinc anode.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 3","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202401287","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The practical application of aqueous zinc ion batteries is still hampered by the side reactions and dendrite growth on Zn anode. Herein, the phase engineering of ZnSe coating layer by incorporating small molecules is developed to enhance the performance of Zn anode. The unique electronic structure of ZnSe⋅0.5N2H4 promises strong adsorption for Zn atoms and enhanced ability to inhibit hydrogen evolution, thereby promoting uniform Zn deposition and preventing by-product and dendrite growth. Meanwhile, fast Zn2+ transfer and deposition kinetics are also demonstrated by ZnSe⋅0.5N2H4. As a result, the ZnSe⋅0.5N2H4@Zn symmetric cell achieves long-term cycling stability up to 1900 h and 300 h at high current densities of 5 mA cm−2 and 20 mA cm−2, respectively. The assembled ZnSe⋅0.5N2H4@Zn||NH4V4O10 full cell presents outstanding cycling stability and rate capability. This work highlights the key role of crystal phase control of protective layer for high-performance zinc anode.

Abstract Image

利用小分子对 ZnSe 进行相工程,使其成为 Zn 阳极的高性能保护层。
锌阳极上的副反应和枝晶生长仍然阻碍着锌离子水电池的实际应用。在此,我们开发了通过加入小分子对 ZnSe 涂层进行相工程处理的方法,以提高锌阳极的性能。ZnSe-0.5N2H4 具有独特的电子结构,对锌原子具有很强的吸附力,并能增强抑制氢演化的能力,从而促进锌的均匀沉积,防止副产物和枝晶的生长。同时,ZnSe-0.5N2H4 还表现出快速的 Zn2+ 转移和沉积动力学。因此,ZnSe-0.5N2H4@Zn 对称电池在 5 mA cm-2 和 20 mA cm-2 的高电流密度下分别实现了长达 1900 小时和 300 小时的长期循环稳定性。组装后的 ZnSe-0.5N2H4@Zn||NVO 全电池具有出色的循环稳定性和速率能力。这项工作凸显了保护层晶相控制在高性能锌阳极中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
文献相关原料
公司名称
产品信息
麦克林
NaSO4
麦克林
ZnCl2
麦克林
N-methyl pyrrolidone
阿拉丁
Se
阿拉丁
hydrazine hydrate
阿拉丁
DETA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信