Enhancing Hole Transport Uniformity for Efficient Inverted Perovskite Solar Cells through Optimizing Buried Interface Contacts and Suppressing Interface Recombination.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Angewandte Chemie International Edition Pub Date : 2024-12-20 Epub Date: 2024-10-22 DOI:10.1002/anie.202412601
Xilai He, Hui Chen, Jiabao Yang, Tong Wang, Xingyu Pu, Guangpeng Feng, Shiyao Jia, Yijun Bai, Zihao Zhou, Qi Cao, Xuanhua Li
{"title":"Enhancing Hole Transport Uniformity for Efficient Inverted Perovskite Solar Cells through Optimizing Buried Interface Contacts and Suppressing Interface Recombination.","authors":"Xilai He, Hui Chen, Jiabao Yang, Tong Wang, Xingyu Pu, Guangpeng Feng, Shiyao Jia, Yijun Bai, Zihao Zhou, Qi Cao, Xuanhua Li","doi":"10.1002/anie.202412601","DOIUrl":null,"url":null,"abstract":"<p><p>[4-(3,6-dimethyl-9H-carbazol-9yl)butyl]phosphonic acid (Me-4PACz) self-assembly material has been recognized as a highly effective approach for mitigating nickel oxide (NiO<sub>x</sub>) surface-related challenges in inverted perovskite solar cells (IPSCs). However, its uneven film generation and failure to effectively passivate the buried interface defects limit the device's performance improvement potential. Herein, p-xylylenediphosphonic acid (p-XPA) containing bilateral phosphate groups (-PO<sub>3</sub>H<sub>2</sub>) is introduced as an interface layer between the NiO<sub>x</sub>/Me-4PACz and the perovskite layer. P-XPA can flatten the surface of hole transport layer and optimize interface contact. Meanwhile, p-XPA achieves better energy level alignment and promotes interfacial hole transport. In addition, the bilateral -PO<sub>3</sub>H<sub>2</sub> of p-XPA can chelate with Pb<sup>2+</sup> and form hydrogen bond with FA<sup>+</sup> (formamidinium cation), thereby suppressing buried interface non-radiative recombination loss. Consequently, the IPSC with p-XPA buried interface modification achieves champion power conversion efficiency of 25.87 % (certified at 25.45 %) at laboratory scale (0.0448 cm<sup>2</sup>). The encapsulated target device exhibits better operational stability. Even after 1100 hours of maximum power point tracking at 50 °C, its efficiency remains at an impressive 82.7 % of the initial efficiency. Molecules featuring bilateral passivation groups optimize interfacial contact and inhibit interfacial recombination, providing an effective approach to enhancing the stability and efficiency of devices.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202412601"},"PeriodicalIF":16.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202412601","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

[4-(3,6-dimethyl-9H-carbazol-9yl)butyl]phosphonic acid (Me-4PACz) self-assembly material has been recognized as a highly effective approach for mitigating nickel oxide (NiOx) surface-related challenges in inverted perovskite solar cells (IPSCs). However, its uneven film generation and failure to effectively passivate the buried interface defects limit the device's performance improvement potential. Herein, p-xylylenediphosphonic acid (p-XPA) containing bilateral phosphate groups (-PO3H2) is introduced as an interface layer between the NiOx/Me-4PACz and the perovskite layer. P-XPA can flatten the surface of hole transport layer and optimize interface contact. Meanwhile, p-XPA achieves better energy level alignment and promotes interfacial hole transport. In addition, the bilateral -PO3H2 of p-XPA can chelate with Pb2+ and form hydrogen bond with FA+ (formamidinium cation), thereby suppressing buried interface non-radiative recombination loss. Consequently, the IPSC with p-XPA buried interface modification achieves champion power conversion efficiency of 25.87 % (certified at 25.45 %) at laboratory scale (0.0448 cm2). The encapsulated target device exhibits better operational stability. Even after 1100 hours of maximum power point tracking at 50 °C, its efficiency remains at an impressive 82.7 % of the initial efficiency. Molecules featuring bilateral passivation groups optimize interfacial contact and inhibit interfacial recombination, providing an effective approach to enhancing the stability and efficiency of devices.

通过优化埋入式界面接触和抑制界面重组,提高高效反相包晶石太阳能电池的空穴传输均匀性。
[4-(3,6-二甲基-9H-咔唑-9-基)丁基]膦酸(Me-4PACz)自组装材料已被认为是减轻倒置包晶太阳能电池(IPSC)中氧化镍(NiOx)表面相关挑战的一种高效方法。然而,其薄膜生成不均匀以及无法有效钝化埋藏的界面缺陷限制了该器件的性能改进潜力。在这里,含有双侧磷酸基团 (-PO3H2) 的对羟基二膦酸 (p-XPA) 被引入作为 NiOx/Me-4PACz 和过氧化物层之间的界面层。P-XPA 可使空穴传输层表面平坦,优化界面接触。同时,p-XPA 可实现更好的能级排列,促进界面空穴传输。此外,p-XPA 的双侧 -PO3H2 可以与 Pb2+ 螯合,并与 FA+(甲脒阳离子)形成氢键,从而抑制埋藏界面的非辐射重组损耗。因此,经 p-XPA 掩埋界面修饰的 IPSC 在实验室规模(0.0448 平方厘米)上实现了 25.87% 的冠军功率转换效率(经认证为 25.45%)。封装后的目标器件具有更好的运行稳定性。即使在 50 ℃ 下跟踪最大功率点 1100 小时后,其效率仍保持在初始效率的 82.7%,令人印象深刻。具有双边钝化基团的分子可优化界面接触并抑制界面重组,为提高器件的稳定性和效率提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信