A Thermally Populated Germylene-Based Donor-Acceptor Diradical.

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yu Zhao, Yuchen Zhang, Tao Wang, Runbo Pei, Yue Zhao, Xiao-Song Xue, Xinping Wang
{"title":"A Thermally Populated Germylene-Based Donor-Acceptor Diradical.","authors":"Yu Zhao, Yuchen Zhang, Tao Wang, Runbo Pei, Yue Zhao, Xiao-Song Xue, Xinping Wang","doi":"10.1002/anie.202411180","DOIUrl":null,"url":null,"abstract":"<p><p>This work reports synthesis of a germylene based donor-acceptor molecule and its thermal excitation to a triplet state by coordination with a Lewis acid. Products have been characterized by single crystal X-ray diffraction, EPR spectroscopy, and SQUID measurement, in conjunction with DFT calculation. The singlet-triplet energy gap of the donor-acceptor molecule is dramatically reduced from -18.8 to -7.2 kcal/mol by the coordination with B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (BCF), which enables an intramolecular single electron transfer from one germylene moiety to another upon heating, forming an intramolecular radical ion pair with diradical character. The work provides an approach to the formation of thermally populated open-shell species of heavier main group elements.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202411180","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work reports synthesis of a germylene based donor-acceptor molecule and its thermal excitation to a triplet state by coordination with a Lewis acid. Products have been characterized by single crystal X-ray diffraction, EPR spectroscopy, and SQUID measurement, in conjunction with DFT calculation. The singlet-triplet energy gap of the donor-acceptor molecule is dramatically reduced from -18.8 to -7.2 kcal/mol by the coordination with B(C6F5)3 (BCF), which enables an intramolecular single electron transfer from one germylene moiety to another upon heating, forming an intramolecular radical ion pair with diradical character. The work provides an approach to the formation of thermally populated open-shell species of heavier main group elements.

一种基于热填充胚芽烯的供体-受体二拉基。
这项研究报告了一种基于锗烯的供体-受体分子的合成及其通过与路易斯酸配位而热激发到三重态的过程。通过单晶 X 射线衍射、EPR 光谱和 SQUID 测量以及 DFT 计算,对产品进行了表征。通过与 B(C6F5)3 (BCF)配位,供体-受体分子的单重态-三重态能隙从-18.8 kcal/mol 显著降低到-7.2 kcal/mol,从而在加热时实现了分子内单电子从一个亚甲二氧基转移到另一个亚甲二氧基,形成了具有二叉性质的分子内自由基离子对。这项工作为形成较重主族元素的热填充开壳物种提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信