An Efficient Trifunctional Spinel-Based Electrode for Oxygen Reduction/Evolution Reactions and Nonoxidative Ethane Dehydrogenation on Protonic Ceramic Electrochemical Cells

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yangsen Xu, Hua Zhang, Kang Xu, Xirui Zhang, Feng Zhu, Wanqing Deng, Fan He, Ying Liu, Yu Chen
{"title":"An Efficient Trifunctional Spinel-Based Electrode for Oxygen Reduction/Evolution Reactions and Nonoxidative Ethane Dehydrogenation on Protonic Ceramic Electrochemical Cells","authors":"Yangsen Xu,&nbsp;Hua Zhang,&nbsp;Kang Xu,&nbsp;Xirui Zhang,&nbsp;Feng Zhu,&nbsp;Wanqing Deng,&nbsp;Fan He,&nbsp;Ying Liu,&nbsp;Yu Chen","doi":"10.1002/adma.202408044","DOIUrl":null,"url":null,"abstract":"<p>Protonic ceramic electrochemical cells (PCECs) have received considerable attention as they can directly generate electricity and/or produce chemicals. Development of the electrodes with the trifunctionalities of oxygen reduction/evolution and nonoxidative ethane dehydrogenation is yet challenging. Here these findings are reported in the design of trifunctional electrodes for PCECs with a detailed composition of Mn<sub>0.9</sub>Cs<sub>0.1</sub>Co<sub>2</sub>O<sub>4-δ</sub> (MCCO) and Co<sub>3</sub>O<sub>4</sub> (CO) (MCCO–CO, 8:2 mass ratio). At 600 °C, the MCCO–CO electrode exhibits a low area-specific resistance of 0.382 Ω cm<sup>2</sup> and reasonable stability for ≈105 h with no obvious degradation. The single cell with the MCCO–CO electrode shows an encouraging peak power density of 1.73 W cm<sup>−2</sup> in the fuel cell (FC) mode and a current density of -3.93 A cm<sup>−2</sup> at 1.3 V in the electrolysis cell (EC) mode at 700 °C. Moreover, the MCCO–CO cell displays promising operational stability in FC mode (223 h), EC mode (209 h), and reversible cycling stability (52 cycles, 208 h) at 650 °C. The MCCO–CO single cell shows an encouraging ethane conversion to ethylene (with a conversion of 40.3% and selectivity of 94%) and excellent H<sub>2</sub> production rates of 4.65 mL min<sup>−1</sup> cm<sup>−2</sup> at 1.5 V and 700 °C, respectively, with reasonable Faradaic efficiencies.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 40","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202408044","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Protonic ceramic electrochemical cells (PCECs) have received considerable attention as they can directly generate electricity and/or produce chemicals. Development of the electrodes with the trifunctionalities of oxygen reduction/evolution and nonoxidative ethane dehydrogenation is yet challenging. Here these findings are reported in the design of trifunctional electrodes for PCECs with a detailed composition of Mn0.9Cs0.1Co2O4-δ (MCCO) and Co3O4 (CO) (MCCO–CO, 8:2 mass ratio). At 600 °C, the MCCO–CO electrode exhibits a low area-specific resistance of 0.382 Ω cm2 and reasonable stability for ≈105 h with no obvious degradation. The single cell with the MCCO–CO electrode shows an encouraging peak power density of 1.73 W cm−2 in the fuel cell (FC) mode and a current density of -3.93 A cm−2 at 1.3 V in the electrolysis cell (EC) mode at 700 °C. Moreover, the MCCO–CO cell displays promising operational stability in FC mode (223 h), EC mode (209 h), and reversible cycling stability (52 cycles, 208 h) at 650 °C. The MCCO–CO single cell shows an encouraging ethane conversion to ethylene (with a conversion of 40.3% and selectivity of 94%) and excellent H2 production rates of 4.65 mL min−1 cm−2 at 1.5 V and 700 °C, respectively, with reasonable Faradaic efficiencies.

Abstract Image

Abstract Image

在质子陶瓷电化学电池上用于氧还原/进化反应和非氧化乙烷脱氢的高效三功能尖晶石基电极。
质子陶瓷电化学电池(PCEC)可直接发电和/或生产化学品,因此受到广泛关注。开发具有氧还原/进化和非氧化乙烷脱氢三种功能的电极仍具有挑战性。本文报告了在设计 PCEC 的三功能电极时的发现,电极的详细组成为 Mn0.9Cs0.1Co2O4-δ (MCCO) 和 Co3O4 (CO)(MCCO-CO,质量比为 8:2)。在 600 °C 时,MCCO-CO 电极显示出 0.382 Ω cm2 的低区域特定电阻,并且在 ≈105 小时内具有合理的稳定性,无明显降解。采用 MCCO-CO 电极的单电池在燃料电池(FC)模式下的峰值功率密度为 1.73 W cm-2,在 700 °C 下的电解池(EC)模式下,1.3 V 的电流密度为 -3.93 A cm-2。此外,MCCO-CO 电池在 FC 模式下(223 小时)、EC 模式下(209 小时)和 650 °C 下的可逆循环稳定性(52 个循环,208 小时)均表现出良好的运行稳定性。MCCO-CO 单电池在 1.5 V 和 700 °C 条件下分别显示出令人鼓舞的乙烷转化为乙烯(转化率为 40.3%,选择性为 94%)和 4.65 mL min-1 cm-2 的优异 H2 产率,以及合理的法拉第效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信