Bridging Innovations of Phase Change Heat Transfer to Electrochemical Gas Evolution Reactions.

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chemical Reviews Pub Date : 2024-09-11 Epub Date: 2024-08-28 DOI:10.1021/acs.chemrev.4c00157
Lenan Zhang, Ryuichi Iwata, Zhengmao Lu, Xuanjie Wang, Carlos D Díaz-Marín, Yang Zhong
{"title":"Bridging Innovations of Phase Change Heat Transfer to Electrochemical Gas Evolution Reactions.","authors":"Lenan Zhang, Ryuichi Iwata, Zhengmao Lu, Xuanjie Wang, Carlos D Díaz-Marín, Yang Zhong","doi":"10.1021/acs.chemrev.4c00157","DOIUrl":null,"url":null,"abstract":"<p><p>Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid-vapor phase change. Recent developments of liquid-vapor phase change systems have substantially advanced the fundamental knowledge of bubbles, leading to unprecedented enhancement of heat transfer performance. In this Review, we aim to elucidate a promising opportunity of understanding bubble dynamics in electrochemical gas evolution reactions through a lens of phase change heat transfer. We first provide a background about key parallels between electrochemical gas evolution reactions and phase change heat transfer. Then, we discuss bubble dynamics in gas evolution systems across multiple length scales, with an emphasis on exciting research problems inspired by new insights gained from liquid-vapor phase change systems. Lastly, we review advances in engineered surfaces for manipulating bubbles to enhance heat and mass transfer, providing an outlook on the design of high-performance gas evolving electrodes.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"10052-10111"},"PeriodicalIF":51.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00157","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid-vapor phase change. Recent developments of liquid-vapor phase change systems have substantially advanced the fundamental knowledge of bubbles, leading to unprecedented enhancement of heat transfer performance. In this Review, we aim to elucidate a promising opportunity of understanding bubble dynamics in electrochemical gas evolution reactions through a lens of phase change heat transfer. We first provide a background about key parallels between electrochemical gas evolution reactions and phase change heat transfer. Then, we discuss bubble dynamics in gas evolution systems across multiple length scales, with an emphasis on exciting research problems inspired by new insights gained from liquid-vapor phase change systems. Lastly, we review advances in engineered surfaces for manipulating bubbles to enhance heat and mass transfer, providing an outlook on the design of high-performance gas evolving electrodes.

Abstract Image

将相变传热的创新应用于电化学气体进化反应。
气泡在电化学气体演化反应中扮演着无处不在的角色。然而,迄今为止,人们对气泡如何影响电化学过程能效的机理理解仍然有限,这阻碍了进一步提高气体演化系统性能的有效方法。从传热和传质的类比角度来看,电化学气体进化反应中的气泡与液-气相变中的气泡表现出高度相似的动态行为。液-气相变系统的最新发展大大推进了对气泡基础知识的了解,使传热性能得到了前所未有的提升。在本综述中,我们旨在通过相变传热的视角,阐明在电化学气体进化反应中理解气泡动力学的大好机会。我们首先介绍了电化学气体演化反应与相变传热之间的主要相似之处。然后,我们将讨论气体演化系统中跨长度尺度的气泡动力学,重点讨论从液气相变系统中获得的新见解所启发的令人兴奋的研究问题。最后,我们回顾了用于操纵气泡以增强传热和传质的工程表面的研究进展,为高性能气体进化电极的设计提供了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信