A Nanoconfined FeCo2O4-Embedded Ceramic Membrane Regulates Electron Transfer in Peroxymonosulfate Activation to Selectively Generate Singlet Oxygen for Water Decontamination.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
环境科学与技术 Pub Date : 2024-10-01 Epub Date: 2024-08-27 DOI:10.1021/acs.est.4c07566
Peng Xu, Rui Wei, Peng Wang, Tianyao Shen, Tong Zheng, Guangshan Zhang
{"title":"A Nanoconfined FeCo<sub>2</sub>O<sub>4</sub>-Embedded Ceramic Membrane Regulates Electron Transfer in Peroxymonosulfate Activation to Selectively Generate Singlet Oxygen for Water Decontamination.","authors":"Peng Xu, Rui Wei, Peng Wang, Tianyao Shen, Tong Zheng, Guangshan Zhang","doi":"10.1021/acs.est.4c07566","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs), as a promising technology for water decontamination, are constrained by low reaction kinetics due to limited reaction selectivity and mass transfer. Herein, we designed a nanoconfined FeCo<sub>2</sub>O<sub>4</sub>-embedded ceramic membrane (FeCo<sub>2</sub>O<sub>4</sub>-CM) under flow-through pattern for PMS activation. Confining PMS and FeCo<sub>2</sub>O<sub>4</sub> within nanochannels (3.0-4.7 nm) enhanced adsorption interactions (-7.84 eV vs -2.20 eV), thus boosting mass transfer. Nanoconfinement effect regulated electron transfer pathways from PMS to FeCo<sub>2</sub>O<sub>4</sub>-CM by modulating the active site transformation to ≡Co(III) in nanoconfined FeCo<sub>2</sub>O<sub>4</sub>-CM, enabling selectively generating <sup>1</sup>O<sub>2</sub>. The primary role of <sup>1</sup>O<sub>2</sub> in the nanoconfined system was confirmed by kinetic solvent isotope experiments and indicative anthracene endoperoxide (DPAO<sub>2</sub>). The system enabled 100% removal of atrazine (ATZ) within a hydraulic retention time of 2.124 ms, demonstrating a rate constant over 5 orders of magnitude higher than the nonconfined system (3.50 × 10<sup>3</sup> s<sup>-1</sup> vs 0.42 min<sup>-1</sup>). It also exhibited strong resilience to pH variations (3.3-9.0) and coexisting substances, demonstrating excellent stability indicated by consistent 100% ATZ removal for 14 days. This study sheds light on regulating electron transfer pathways to selectively generate <sup>1</sup>O<sub>2</sub> through the nanoconfinement effect, boosting the practical application of PMS-based AOPs in environmental remediation and potentially applying them to various other AOPs.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c07566","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs), as a promising technology for water decontamination, are constrained by low reaction kinetics due to limited reaction selectivity and mass transfer. Herein, we designed a nanoconfined FeCo2O4-embedded ceramic membrane (FeCo2O4-CM) under flow-through pattern for PMS activation. Confining PMS and FeCo2O4 within nanochannels (3.0-4.7 nm) enhanced adsorption interactions (-7.84 eV vs -2.20 eV), thus boosting mass transfer. Nanoconfinement effect regulated electron transfer pathways from PMS to FeCo2O4-CM by modulating the active site transformation to ≡Co(III) in nanoconfined FeCo2O4-CM, enabling selectively generating 1O2. The primary role of 1O2 in the nanoconfined system was confirmed by kinetic solvent isotope experiments and indicative anthracene endoperoxide (DPAO2). The system enabled 100% removal of atrazine (ATZ) within a hydraulic retention time of 2.124 ms, demonstrating a rate constant over 5 orders of magnitude higher than the nonconfined system (3.50 × 103 s-1 vs 0.42 min-1). It also exhibited strong resilience to pH variations (3.3-9.0) and coexisting substances, demonstrating excellent stability indicated by consistent 100% ATZ removal for 14 days. This study sheds light on regulating electron transfer pathways to selectively generate 1O2 through the nanoconfinement effect, boosting the practical application of PMS-based AOPs in environmental remediation and potentially applying them to various other AOPs.

Abstract Image

纳米封闭的 FeCo2O4 嵌入陶瓷膜可调节过硫酸盐活化过程中的电子转移,从而选择性地产生用于水净化的单线态氧。
基于过一硫酸盐(PMS)的高级氧化工艺(AOPs)是一种前景广阔的水净化技术,但由于反应选择性和传质有限,其反应动力学受到限制。在此,我们设计了一种纳米密闭的 FeCo2O4 嵌入式陶瓷膜(FeCo2O4-CM),用于 PMS 的活化。将 PMS 和 FeCo2O4 限制在纳米通道(3.0-4.7 nm)内增强了吸附相互作用(-7.84 eV vs -2.20 eV),从而促进了传质。纳米细化效应通过调节纳米细化 FeCo2O4-CM 中活性位点向≡Co(III)的转变,调节了从 PMS 到 FeCo2O4-CM 的电子传递途径,从而有选择性地生成了 1O2。动力学溶剂同位素实验和指示性蒽过氧化物(DPAO2)证实了 1O2 在纳米封闭系统中的主要作用。该系统可在 2.124 毫秒的水力停留时间内 100% 去除阿特拉津 (ATZ),其速率常数比非封闭系统高出 5 个数量级以上(3.50 × 103 s-1 vs 0.42 min-1)。它还对 pH 值变化(3.3-9.0)和共存物质表现出很强的适应能力,14 天内 ATZ 的去除率始终保持在 100%,显示出极佳的稳定性。这项研究揭示了通过纳米融合效应调节电子传递途径以选择性地生成 1O2,从而促进了基于 PMS 的 AOP 在环境修复中的实际应用,并有可能将其应用于其他各种 AOP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信