{"title":"Regulation mechanism of droplets wetting on banana leaf surface and its dynamic contact angle wetting model","authors":"","doi":"10.1016/j.cropro.2024.106920","DOIUrl":null,"url":null,"abstract":"<div><p>The effective wetting and deposition of pesticide droplets on the leaf surface significantly affect the control of pests and diseases, and its mainly affected by the leaf surface properties and pesticide formulation properties. This article aims to investigate the wettability regulation mechanism and dynamic wetting properties of banana leaves, in order to intelligently design appropriate pesticide formulations. The micro-morphology of the banana leaves exhibits a micro-nano dual-scale structure with different microstructures and roughness on the adaxial side and abaxial side. Correspondingly, the wettability on the adaxial side of the banana leaf with higher roughness (<em>R</em><sub><em>q</em></sub> = 71.1 nm) is always better than that on the abaxial side (<em>R</em><sub><em>q</em></sub> = 42.5 nm). The droplet contact performance of droplets exhibits a strong concentration dependence of surfactants, which regulate the inter-species differences in the wettability of different pesticide formulations on both sides. Besides, the dynamic wetting process of pesticide droplets exhibits strong time dependence, by using a time series method to establish an <em>AR</em>(2) model, precise simulation and prediction of the contact angle changes on the adaxial side (<em>R</em><sup><em>2</em></sup> = 0.9560) and abaxial side (<em>R</em><sup><em>2</em></sup> = 0.8903) during the dynamic wetting process were achieved. The dynamic wetting model provides new insights into the spreading and deposition processes of droplets on leaves. This work provides a favorable reference for the study of the dynamic balance between wetting and adhesion properties of pesticide spray on leaf surfaces.</p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026121942400348X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The effective wetting and deposition of pesticide droplets on the leaf surface significantly affect the control of pests and diseases, and its mainly affected by the leaf surface properties and pesticide formulation properties. This article aims to investigate the wettability regulation mechanism and dynamic wetting properties of banana leaves, in order to intelligently design appropriate pesticide formulations. The micro-morphology of the banana leaves exhibits a micro-nano dual-scale structure with different microstructures and roughness on the adaxial side and abaxial side. Correspondingly, the wettability on the adaxial side of the banana leaf with higher roughness (Rq = 71.1 nm) is always better than that on the abaxial side (Rq = 42.5 nm). The droplet contact performance of droplets exhibits a strong concentration dependence of surfactants, which regulate the inter-species differences in the wettability of different pesticide formulations on both sides. Besides, the dynamic wetting process of pesticide droplets exhibits strong time dependence, by using a time series method to establish an AR(2) model, precise simulation and prediction of the contact angle changes on the adaxial side (R2 = 0.9560) and abaxial side (R2 = 0.8903) during the dynamic wetting process were achieved. The dynamic wetting model provides new insights into the spreading and deposition processes of droplets on leaves. This work provides a favorable reference for the study of the dynamic balance between wetting and adhesion properties of pesticide spray on leaf surfaces.
期刊介绍:
The Editors of Crop Protection especially welcome papers describing an interdisciplinary approach showing how different control strategies can be integrated into practical pest management programs, covering high and low input agricultural systems worldwide. Crop Protection particularly emphasizes the practical aspects of control in the field and for protected crops, and includes work which may lead in the near future to more effective control. The journal does not duplicate the many existing excellent biological science journals, which deal mainly with the more fundamental aspects of plant pathology, applied zoology and weed science. Crop Protection covers all practical aspects of pest, disease and weed control, including the following topics:
-Abiotic damage-
Agronomic control methods-
Assessment of pest and disease damage-
Molecular methods for the detection and assessment of pests and diseases-
Biological control-
Biorational pesticides-
Control of animal pests of world crops-
Control of diseases of crop plants caused by microorganisms-
Control of weeds and integrated management-
Economic considerations-
Effects of plant growth regulators-
Environmental benefits of reduced pesticide use-
Environmental effects of pesticides-
Epidemiology of pests and diseases in relation to control-
GM Crops, and genetic engineering applications-
Importance and control of postharvest crop losses-
Integrated control-
Interrelationships and compatibility among different control strategies-
Invasive species as they relate to implications for crop protection-
Pesticide application methods-
Pest management-
Phytobiomes for pest and disease control-
Resistance management-
Sampling and monitoring schemes for diseases, nematodes, pests and weeds.