PU-GNN: A Positive-Unlabeled Learning Method for Polypharmacy Side-Effects Detection Based on Graph Neural Networks

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Abedin Keshavarz, Amir Lakizadeh
{"title":"PU-GNN: A Positive-Unlabeled Learning Method for Polypharmacy Side-Effects Detection Based on Graph Neural Networks","authors":"Abedin Keshavarz,&nbsp;Amir Lakizadeh","doi":"10.1155/2024/4749668","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The simultaneous use of multiple drugs, known as polypharmacy, heightens the risks of harmful side effects due to drug-drug interactions. Predicting these interactions is crucial in drug research due to the rising prevalence of polypharmacy. Researchers employ a graphical structure to model these interactions, representing drugs and side effects as nodes and their interactions as edges. This creates a multipartite graph that encompasses various interactions such as protein-protein interactions, drug-target interactions, and side effects of polypharmacy. In this study, a method named PU-GNN, based on graph neural networks, is introduced to predict drug side effects. The proposed method involves three main steps: (1) drug features extraction using a novel biclustering algorithm, (2) reducing uncertainity in input data using a positive-unlabeled learning algorithm, and (3) prediction of drug’s polypharmacies by utilizing a graph neural network. Performance evaluation using 5-fold cross-validation reveals that PU-GNN surpasses other methods, achieving high scores of 0.977, 0.96, and 0.949 in the AUPR, AUC, and F1 measures, respectively.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4749668","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4749668","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The simultaneous use of multiple drugs, known as polypharmacy, heightens the risks of harmful side effects due to drug-drug interactions. Predicting these interactions is crucial in drug research due to the rising prevalence of polypharmacy. Researchers employ a graphical structure to model these interactions, representing drugs and side effects as nodes and their interactions as edges. This creates a multipartite graph that encompasses various interactions such as protein-protein interactions, drug-target interactions, and side effects of polypharmacy. In this study, a method named PU-GNN, based on graph neural networks, is introduced to predict drug side effects. The proposed method involves three main steps: (1) drug features extraction using a novel biclustering algorithm, (2) reducing uncertainity in input data using a positive-unlabeled learning algorithm, and (3) prediction of drug’s polypharmacies by utilizing a graph neural network. Performance evaluation using 5-fold cross-validation reveals that PU-GNN surpasses other methods, achieving high scores of 0.977, 0.96, and 0.949 in the AUPR, AUC, and F1 measures, respectively.

Abstract Image

PU-GNN:基于图神经网络的多药副作用检测正向无标记学习法
同时使用多种药物(即 "多药合用")会增加因药物间相互作用而产生有害副作用的风险。由于多药合用日益普遍,预测这些相互作用对药物研究至关重要。研究人员采用图形结构来模拟这些相互作用,将药物和副作用表示为节点,将它们之间的相互作用表示为边。这就形成了一个多方图,其中包含各种相互作用,如蛋白质与蛋白质之间的相互作用、药物与靶点之间的相互作用以及多种药物的副作用。本研究介绍了一种基于图神经网络的方法,名为 PU-GNN,用于预测药物副作用。所提出的方法包括三个主要步骤:(1) 使用新型双聚类算法提取药物特征;(2) 使用正向无标记学习算法减少输入数据的不确定性;(3) 利用图神经网络预测药物的多药性。使用 5 倍交叉验证进行的性能评估表明,PU-GNN 超越了其他方法,在 AUPR、AUC 和 F1 指标上分别获得了 0.977、0.96 和 0.949 的高分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信