A note on the squarefree density of polynomials

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-08-26 DOI:10.1112/mtk.12275
R. C. Vaughan, Yu. G. Zarhin
{"title":"A note on the squarefree density of polynomials","authors":"R. C. Vaughan,&nbsp;Yu. G. Zarhin","doi":"10.1112/mtk.12275","DOIUrl":null,"url":null,"abstract":"<p>The conjectured squarefree density of an integral polynomial <span></span><math></math> in <span></span><math></math> variables is an Euler product <span></span><math></math> which can be considered as a product of local densities. We show that a necessary and sufficient condition for <span></span><math></math> to be 0 when <span></span><math></math> is a polynomial in <span></span><math></math> variables over the integers, is that either there is a prime <span></span><math></math> such that the values of <span></span><math></math> at all integer points are divisible by <span></span><math></math> or the polynomial is not squarefree as a polynomial. We also show that generally the upper squarefree density <span></span><math></math> satisfies <span></span><math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12275","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12275","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The conjectured squarefree density of an integral polynomial in variables is an Euler product which can be considered as a product of local densities. We show that a necessary and sufficient condition for to be 0 when is a polynomial in variables over the integers, is that either there is a prime such that the values of at all integer points are divisible by or the polynomial is not squarefree as a polynomial. We also show that generally the upper squarefree density satisfies .

关于多项式无平方密度的说明
猜想中的变量积分多项式的无平方密度是一个欧拉积,可以看作是局部密度的积。我们证明,当是一个整数上的变量多项式时,0 的必要条件和充分条件是:要么有一个质数使得所有整数点的值都能被除以,要么这个多项式不是无平方多项式。我们还证明,一般情况下,无平方上限密度满足 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信