Pursuit-evasion in graphs: Zombies, lazy zombies and a survivor

IF 0.7 3区 数学 Q2 MATHEMATICS
Prosenjit Bose , Jean-Lou De Carufel , Thomas Shermer
{"title":"Pursuit-evasion in graphs: Zombies, lazy zombies and a survivor","authors":"Prosenjit Bose ,&nbsp;Jean-Lou De Carufel ,&nbsp;Thomas Shermer","doi":"10.1016/j.disc.2024.114220","DOIUrl":null,"url":null,"abstract":"<div><p>We study <em>zombies and survivor</em>, a variant of the game of cops and robber on graphs where the single survivor plays the role of the robber and attempts to escape from the zombies that play the role of the cops. The difference is that zombies must follow an edge of a shortest path towards the survivor on their turn. Let <span><math><mi>z</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the smallest number of zombies required to catch the survivor on a graph <em>G</em> with <em>n</em> vertices. We show that there exist outerplanar graphs and visibility graphs of simple polygons such that <span><math><mi>z</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. We also show that there exist maximum-degree-3 outerplanar graphs such that <span><math><mi>z</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow></math></span>.</p><p>A zombie that can remain at its current vertex on its turn is called <em>lazy</em>. Let <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the smallest number of <em>lazy zombies</em> required to catch the survivor. The ability to remain at its current vertex on its turn makes lazy zombies more powerful than normal zombies but less powerful than cops. We prove that <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn></math></span> for connected outerplanar graphs which is tight in the worst case. We also show that in this case, the survivor is caught after <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> rounds. We then show that <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>k</mi></math></span> for connected graphs with treedepth <em>k</em> and that <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup><mo>)</mo></math></span> rounds are sufficient to catch the survivor. The bound on treedepth implies that <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is at most <span><math><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>log</mi><mo>⁡</mo><mi>n</mi></math></span> for connected graphs with treewidth <em>k</em>, <span><math><mi>O</mi><mo>(</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> for connected planar graphs, <span><math><mi>O</mi><mo>(</mo><msqrt><mrow><mi>g</mi><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> for connected graphs with genus <em>g</em> and <span><math><mi>O</mi><mo>(</mo><mi>h</mi><msqrt><mrow><mi>h</mi><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> for connected graphs with any excluded <em>h</em>-vertex minor. Our results on lazy zombies still hold when an adversary chooses the initial positions of the zombies.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114220"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003510/pdfft?md5=bb277c6c089d1c05a249b293a26a64fe&pid=1-s2.0-S0012365X24003510-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003510","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study zombies and survivor, a variant of the game of cops and robber on graphs where the single survivor plays the role of the robber and attempts to escape from the zombies that play the role of the cops. The difference is that zombies must follow an edge of a shortest path towards the survivor on their turn. Let z(G) be the smallest number of zombies required to catch the survivor on a graph G with n vertices. We show that there exist outerplanar graphs and visibility graphs of simple polygons such that z(G)=Θ(n). We also show that there exist maximum-degree-3 outerplanar graphs such that z(G)=Ω(n/log(n)).

A zombie that can remain at its current vertex on its turn is called lazy. Let zL(G) be the smallest number of lazy zombies required to catch the survivor. The ability to remain at its current vertex on its turn makes lazy zombies more powerful than normal zombies but less powerful than cops. We prove that zL(G)2 for connected outerplanar graphs which is tight in the worst case. We also show that in this case, the survivor is caught after O(n) rounds. We then show that zL(G)k for connected graphs with treedepth k and that O(n2k) rounds are sufficient to catch the survivor. The bound on treedepth implies that zL(G) is at most (k+1)logn for connected graphs with treewidth k, O(n) for connected planar graphs, O(gn) for connected graphs with genus g and O(hhn) for connected graphs with any excluded h-vertex minor. Our results on lazy zombies still hold when an adversary chooses the initial positions of the zombies.

图形中的追逐-逃避:僵尸、懒惰僵尸和幸存者
我们研究的是 "僵尸与幸存者",这是警察与强盗游戏在图形上的一种变体,其中单个幸存者扮演强盗,并试图从扮演警察的僵尸手中逃脱。所不同的是,僵尸在轮到自己时必须沿着最短路径的一条边走向幸存者。假设 z(G) 是在一个有 n 个顶点的图 G 上抓住幸存者所需的最少僵尸数量。我们证明存在外平面图和简单多边形的可见性图,使得 z(G)=Θ(n) 。我们还证明,存在最大度数为 3 的外平面图,使得 z(G)=Ω(n/log(n))。让 zL(G) 成为捕捉幸存者所需的最小懒惰僵尸数量。由于懒惰僵尸可以停留在当前顶点,所以它比普通僵尸更强大,但比警察更弱小。我们证明,对于连通的外平面图,zL(G)≤2,这在最坏情况下是紧密的。我们还证明,在这种情况下,幸存者会在 O(n) 轮后被抓获。然后我们证明,对于树深度为 k 的连通图,zL(G)≤k,并且 O(n2k) 轮足以捕捉到幸存者。对树深的约束意味着,对于树宽为 k 的连通图,zL(G)最多为 (k+1)logn;对于连通的平面图,zL(G)最多为 O(n);对于属数为 g 的连通图,zL(G)最多为 O(gn);对于具有任意排除的 h 个顶点的连通图,zL(G)最多为 O(hhn)。当对手选择僵尸的初始位置时,我们关于懒惰僵尸的结果仍然成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信