Construction of drug-free sodium bicarbonate nanoparticles with high water-tolerance for gas therapy to selectively induce non-apoptotic death of cancer cells

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinlian He, Xinyi Dai, Ziyang Wang, Jingjie Ye, Jiangbo Wang, Jun Feng, Xian-Zheng Zhang
{"title":"Construction of drug-free sodium bicarbonate nanoparticles with high water-tolerance for gas therapy to selectively induce non-apoptotic death of cancer cells","authors":"Jinlian He,&nbsp;Xinyi Dai,&nbsp;Ziyang Wang,&nbsp;Jingjie Ye,&nbsp;Jiangbo Wang,&nbsp;Jun Feng,&nbsp;Xian-Zheng Zhang","doi":"10.1016/j.nantod.2024.102463","DOIUrl":null,"url":null,"abstract":"<div><p>Developing drug-free nanotherapeutics is extremely appealing provided they could achieve effective therapeutic performances. This study proposes a sodium bicarbonate-dependent gas therapy modality targeting fragile lysosomes of cancer cells through carbon dioxide-induced lysosomal rupture. Interestingly, we reveal that this gas therapy induces cell death through the combination of necrosis, pyroptosis and ferroptosis, rather than the conventional apoptosis pathway. Notably, the high water-solubility of sodium bicarbonate presents a significant challenge in engineering its nanotherapeutics that require long-term water-tolerance for its intravenous delivery. To address this issue, an EPDPPP approach is here developed under aqueous conditions. Without any anticancer drugs, the sodium bicarbonate nanoparticles alone can selectively kill cancer cells with high specificity. Thanks to the high water tolerance, the sodium bicarbonate nanoparticles coated with cancer cell membranes have shown favorable performance in targeting and inhibiting tumors after intravenous administration. This water-tolerant sodium bicarbonate nanoplatform is expected to have potential applications in various medical fields, including the targeted gas therapy. Additionally, this study may suggest a viable direction for developing water-tolerant nanoparticles derived from water-soluble inorganic salts.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"58 ","pages":"Article 102463"},"PeriodicalIF":13.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003190","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing drug-free nanotherapeutics is extremely appealing provided they could achieve effective therapeutic performances. This study proposes a sodium bicarbonate-dependent gas therapy modality targeting fragile lysosomes of cancer cells through carbon dioxide-induced lysosomal rupture. Interestingly, we reveal that this gas therapy induces cell death through the combination of necrosis, pyroptosis and ferroptosis, rather than the conventional apoptosis pathway. Notably, the high water-solubility of sodium bicarbonate presents a significant challenge in engineering its nanotherapeutics that require long-term water-tolerance for its intravenous delivery. To address this issue, an EPDPPP approach is here developed under aqueous conditions. Without any anticancer drugs, the sodium bicarbonate nanoparticles alone can selectively kill cancer cells with high specificity. Thanks to the high water tolerance, the sodium bicarbonate nanoparticles coated with cancer cell membranes have shown favorable performance in targeting and inhibiting tumors after intravenous administration. This water-tolerant sodium bicarbonate nanoplatform is expected to have potential applications in various medical fields, including the targeted gas therapy. Additionally, this study may suggest a viable direction for developing water-tolerant nanoparticles derived from water-soluble inorganic salts.

构建具有高耐水性的无药碳酸氢钠纳米颗粒,用于气体疗法,选择性诱导癌细胞非凋亡死亡
开发不含药物的纳米疗法极具吸引力,前提是它们能实现有效的治疗效果。本研究提出了一种依赖碳酸氢钠的气体疗法模式,通过二氧化碳诱导溶酶体破裂,靶向癌细胞的脆弱溶酶体。有趣的是,我们发现这种气体疗法通过细胞坏死、热凋亡和铁凋亡的组合而非传统的细胞凋亡途径诱导细胞死亡。值得注意的是,碳酸氢钠的高水溶性给需要长期耐水才能进行静脉注射的纳米疗法的工程设计带来了巨大挑战。为解决这一问题,本文开发了一种在水性条件下的 EPDPPP 方法。在不使用任何抗癌药物的情况下,仅碳酸氢钠纳米粒子就能以高度特异性选择性地杀死癌细胞。由于碳酸氢钠纳米粒子具有很高的耐水性,因此在静脉注射后,涂有癌细胞膜的碳酸氢钠纳米粒子在靶向和抑制肿瘤方面表现出良好的性能。这种耐水性碳酸氢钠纳米平台有望应用于各种医疗领域,包括靶向气体疗法。此外,这项研究还为开发源自水溶性无机盐的耐水纳米粒子提供了一个可行的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信