Reduced-order reconstruction of discrete grey forecasting model and its application

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kailing Li, Naiming Xie
{"title":"Reduced-order reconstruction of discrete grey forecasting model and its application","authors":"Kailing Li,&nbsp;Naiming Xie","doi":"10.1016/j.cnsns.2024.108310","DOIUrl":null,"url":null,"abstract":"<div><p>Discrete grey forecasting models based on an accumulative operator have been widely used in many practical fields. With the development of grey forecasting models, it is a problem to be solved to further analyze internal mechanisms and unify the structures. This paper aims to reconstruct the model from a perspective of sequence characteristics and simplify the modeling steps under the condition of ensuring the accuracy of the model. First, this paper analyzes dynamic sequence evolution hidden and mines relationship between the structure and original sequence features contained in discrete grey forecasting model. Then, the reconstruction is carried out to prove the equivalence and quantitative relation between reduced-order model and original model. Under order recursive estimation, new parameters are addressed. Finally, theoretical correctness is verified by large-scale numerical simulation. Moreover, the reduced-order model is applied for prediction on the peak of battery incremental capacity and capacity degradation. Results show the effectiveness and superior prediction performance of the reduced-order model, where MAPEs of grey forecasting models have controlled under 4%.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004957","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Discrete grey forecasting models based on an accumulative operator have been widely used in many practical fields. With the development of grey forecasting models, it is a problem to be solved to further analyze internal mechanisms and unify the structures. This paper aims to reconstruct the model from a perspective of sequence characteristics and simplify the modeling steps under the condition of ensuring the accuracy of the model. First, this paper analyzes dynamic sequence evolution hidden and mines relationship between the structure and original sequence features contained in discrete grey forecasting model. Then, the reconstruction is carried out to prove the equivalence and quantitative relation between reduced-order model and original model. Under order recursive estimation, new parameters are addressed. Finally, theoretical correctness is verified by large-scale numerical simulation. Moreover, the reduced-order model is applied for prediction on the peak of battery incremental capacity and capacity degradation. Results show the effectiveness and superior prediction performance of the reduced-order model, where MAPEs of grey forecasting models have controlled under 4%.

离散灰色预测模型的降阶重构及其应用
基于累加算子的离散灰色预测模型已被广泛应用于许多实际领域。随着灰色预报模型的发展,如何进一步分析内部机理、统一结构是一个亟待解决的问题。本文旨在从序列特征的角度重构模型,在保证模型精度的前提下简化建模步骤。首先,本文分析了离散灰色预测模型所包含的动态序列演化隐含及矿井结构与原始序列特征之间的关系。然后,进行重构,证明降阶模型与原模型的等价性和定量关系。在阶递归估计下,解决了新参数的问题。最后,通过大规模数值模拟验证了理论的正确性。此外,还将降阶模型应用于电池增量容量和容量衰减峰值的预测。结果表明,降阶模型非常有效,预测性能优越,灰色预测模型的 MAPE 控制在 4% 以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信