Yufeng Zhang , Xiangdong Liu , Zilong Deng , Yongping Chen
{"title":"Asymmetric droplet splitting in a T-junction under a pressure difference","authors":"Yufeng Zhang , Xiangdong Liu , Zilong Deng , Yongping Chen","doi":"10.1016/j.ijmultiphaseflow.2024.104967","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the phase-field multiphase lattice Boltzmann method is employed to simulate droplet breakup in a T-junction under different outlet pressures. Three behaviors of droplet breakup: non-breakup (flow pattern I), breakup with tunnels (flow pattern II), and breakup with permanent obstruction (flow pattern Ⅲ) are identified. The evolution of morphological characteristics of droplet breakup is quantitatively characterized, based on which the asymmetric splitting mechanisms and the influencing factors are clarified. Additionally, the factors influencing the droplet splitting volume ratio (<em>V</em><sub>II</sub>/<em>V</em><sub>I</sub>) are elucidated. The results indicate that there is a non-linear relationship between the <em>V</em><sub>II</sub>/<em>V</em><sub>I</sub> and the flow rate ratio. Moreover, the curve depicting the final <em>V</em><sub>II</sub>/<em>V</em><sub>I</sub> versus the initial droplet length exhibits a V-shape and has a minimum value. A conclusion is drawn that the Capillary number mainly influences flow pattern II, with the final <em>V</em><sub>II</sub>/<em>V</em><sub>I</sub> decreasing as the Capillary number increases. Additionally, for flow pattern III, the final <em>V</em><sub>II</sub>/<em>V</em><sub>I</sub> increases linearly with rising droplet size at low viscosity ratios, whereas it decreases linearly at high viscosity ratios. The growing outlet pressure difference enlarges the flow difference between the two branches, leading to an increase in the final <em>V</em><sub>II</sub>/<em>V</em><sub>I</sub>.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"180 ","pages":"Article 104967"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224002441","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the phase-field multiphase lattice Boltzmann method is employed to simulate droplet breakup in a T-junction under different outlet pressures. Three behaviors of droplet breakup: non-breakup (flow pattern I), breakup with tunnels (flow pattern II), and breakup with permanent obstruction (flow pattern Ⅲ) are identified. The evolution of morphological characteristics of droplet breakup is quantitatively characterized, based on which the asymmetric splitting mechanisms and the influencing factors are clarified. Additionally, the factors influencing the droplet splitting volume ratio (VII/VI) are elucidated. The results indicate that there is a non-linear relationship between the VII/VI and the flow rate ratio. Moreover, the curve depicting the final VII/VI versus the initial droplet length exhibits a V-shape and has a minimum value. A conclusion is drawn that the Capillary number mainly influences flow pattern II, with the final VII/VI decreasing as the Capillary number increases. Additionally, for flow pattern III, the final VII/VI increases linearly with rising droplet size at low viscosity ratios, whereas it decreases linearly at high viscosity ratios. The growing outlet pressure difference enlarges the flow difference between the two branches, leading to an increase in the final VII/VI.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.