Assessment of climatic influences on net primary productivity along elevation gradients in temperate ecoregions

IF 2.7 Q1 FORESTRY
Kaleem Mehmood , Shoaib Ahmad Anees , Akhtar Rehman , Nazir Ur Rehman , Sultan Muhammad , Fahad Shahzad , Qijing Liu , Sulaiman Ali Alharbi , Saleh Alfarraj , Mohammad Javed Ansari , Waseem Razzaq Khan
{"title":"Assessment of climatic influences on net primary productivity along elevation gradients in temperate ecoregions","authors":"Kaleem Mehmood ,&nbsp;Shoaib Ahmad Anees ,&nbsp;Akhtar Rehman ,&nbsp;Nazir Ur Rehman ,&nbsp;Sultan Muhammad ,&nbsp;Fahad Shahzad ,&nbsp;Qijing Liu ,&nbsp;Sulaiman Ali Alharbi ,&nbsp;Saleh Alfarraj ,&nbsp;Mohammad Javed Ansari ,&nbsp;Waseem Razzaq Khan","doi":"10.1016/j.tfp.2024.100657","DOIUrl":null,"url":null,"abstract":"<div><p>Elevation gradients significantly influence net primary productivity (NPP), but the relationship between elevation, climate variables, and vegetation productivity remains underexplored, particularly in diverse ecological zones. This study quantifies the impact of elevation and climatic variables on NPP in northern Pakistan, hypothesizing that elevation modulates NPP through its influence on temperature and precipitation patterns. Using remote sensing data (MODIS ERA5) and advanced ecological models like the Eddy Covariance-Light Use Efficiency (EC-LUE) model and the Thornthwaite Memorial Model (TMM), we analyzed Gross Primary Productivity (GPP) dynamics across various vegetation types and elevations from 2001 to 2023. Our findings show a mean annual NPP of 323.46 g C m-2 a-1, with an annual increase of 5.73 g C m-2 a-1. Significant elevation-dependent variations were observed, especially in mid-elevation zones (401 to 1600 meters), where NPP increased at a rate of 0.174 g C m-2 a-1 per meter (R² = 0.808, p &lt; 0.01). In contrast, higher elevations (2800-5200 meters) exhibited a decline in NPP, decreasing by -0.171 g C m-2 a-1 per meter (R² = 0.905, p &lt; 0.001). Temperature and precipitation were key drivers, with precipitation positively correlating with NPP across all vegetation types, particularly in Evergreen Needleleaf and Broadleaf Trees. The EC-LUE model's GPP estimates closely matched MODIS data (R² = 0.82), demonstrating the model's reliability. These findings highlight the critical role of elevation and climatic factors in vegetation productivity and underscore the need for targeted ecological management and conservation strategies. The insights from this research are vital for global climate adaptation policies and sustainable development goals, contributing to ecological resilience and carbon sequestration efforts worldwide.</p></div>","PeriodicalId":36104,"journal":{"name":"Trees, Forests and People","volume":"18 ","pages":"Article 100657"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266671932400164X/pdfft?md5=4e727eb3945f45b3825d005d4f3208df&pid=1-s2.0-S266671932400164X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees, Forests and People","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266671932400164X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Elevation gradients significantly influence net primary productivity (NPP), but the relationship between elevation, climate variables, and vegetation productivity remains underexplored, particularly in diverse ecological zones. This study quantifies the impact of elevation and climatic variables on NPP in northern Pakistan, hypothesizing that elevation modulates NPP through its influence on temperature and precipitation patterns. Using remote sensing data (MODIS ERA5) and advanced ecological models like the Eddy Covariance-Light Use Efficiency (EC-LUE) model and the Thornthwaite Memorial Model (TMM), we analyzed Gross Primary Productivity (GPP) dynamics across various vegetation types and elevations from 2001 to 2023. Our findings show a mean annual NPP of 323.46 g C m-2 a-1, with an annual increase of 5.73 g C m-2 a-1. Significant elevation-dependent variations were observed, especially in mid-elevation zones (401 to 1600 meters), where NPP increased at a rate of 0.174 g C m-2 a-1 per meter (R² = 0.808, p < 0.01). In contrast, higher elevations (2800-5200 meters) exhibited a decline in NPP, decreasing by -0.171 g C m-2 a-1 per meter (R² = 0.905, p < 0.001). Temperature and precipitation were key drivers, with precipitation positively correlating with NPP across all vegetation types, particularly in Evergreen Needleleaf and Broadleaf Trees. The EC-LUE model's GPP estimates closely matched MODIS data (R² = 0.82), demonstrating the model's reliability. These findings highlight the critical role of elevation and climatic factors in vegetation productivity and underscore the need for targeted ecological management and conservation strategies. The insights from this research are vital for global climate adaptation policies and sustainable development goals, contributing to ecological resilience and carbon sequestration efforts worldwide.

评估气候对温带生态区海拔梯度净初级生产力的影响
海拔梯度对净初级生产力(NPP)有重大影响,但海拔、气候变量和植被生产力之间的关系仍未得到充分探索,尤其是在不同的生态区域。本研究量化了巴基斯坦北部海拔高度和气候变量对净初级生产力的影响,假设海拔高度通过影响温度和降水模式来调节净初级生产力。利用遥感数据(MODIS ERA5)以及涡协方差-光利用效率(EC-LUE)模型和索恩斯韦特纪念模型(TMM)等先进生态模型,我们分析了 2001 年至 2023 年各种植被类型和海拔高度的初级生产力(GPP)动态。我们的研究结果表明,年平均净初级生产力为 323.46 g C m-2 a-1,年增长率为 5.73 g C m-2 a-1。我们观察到了显著的海拔变化,尤其是在中海拔区域(401 米至 1600 米),净生产力以每米 0.174 克 C m-2 a-1 的速度增长(R² = 0.808,p <0.01)。相比之下,海拔较高(2800-5200 米)的净生产力有所下降,每米下降-0.171 g C m-2 a-1 (R² = 0.905, p <0.001)。温度和降水是主要的驱动因素,降水与所有植被类型的净生产力呈正相关,尤其是常绿针叶树和阔叶树。EC-LUE 模型的 GPP 估计值与 MODIS 数据非常吻合(R² = 0.82),证明了该模型的可靠性。这些发现凸显了海拔和气候因素在植被生产力中的关键作用,并强调了有针对性的生态管理和保护战略的必要性。这项研究的见解对全球气候适应政策和可持续发展目标至关重要,有助于全球生态恢复和碳封存工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trees, Forests and People
Trees, Forests and People Economics, Econometrics and Finance-Economics, Econometrics and Finance (miscellaneous)
CiteScore
4.30
自引率
7.40%
发文量
172
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信