A Bayesian deep recommender system for uncertainty-aware online physician recommendation

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Fulai Cui , Shuo Yu , Yidong Chai , Yang Qian , Yuanchun Jiang , Yezheng Liu , Xiao Liu , Jianxin Li
{"title":"A Bayesian deep recommender system for uncertainty-aware online physician recommendation","authors":"Fulai Cui ,&nbsp;Shuo Yu ,&nbsp;Yidong Chai ,&nbsp;Yang Qian ,&nbsp;Yuanchun Jiang ,&nbsp;Yezheng Liu ,&nbsp;Xiao Liu ,&nbsp;Jianxin Li","doi":"10.1016/j.im.2024.104027","DOIUrl":null,"url":null,"abstract":"<div><p>Online physician recommender systems alleviate information overload by automatically recommending the best-fit physicians to patients. In contrast to general recommendations, physicians with greater uncertainty (i.e., greater variance in patients’ feedback) may not be preferred as this could affect patients’ treatment. However, most existing recommender systems don't consider uncertainty, reducing systems’ reliability and patients’ readiness to trust. To address this concern, this study leverages Bayesian theory and develops an uncertainty-aware online physician recommender system, including a Bayesian deep collaborative filtering (BDCF) model and a novel uncertainty-aware ranking algorithm. Experiments on real-world data demonstrate the superiority of BDCF and the ranking algorithm.</p></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"61 7","pages":"Article 104027"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720624001095","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Online physician recommender systems alleviate information overload by automatically recommending the best-fit physicians to patients. In contrast to general recommendations, physicians with greater uncertainty (i.e., greater variance in patients’ feedback) may not be preferred as this could affect patients’ treatment. However, most existing recommender systems don't consider uncertainty, reducing systems’ reliability and patients’ readiness to trust. To address this concern, this study leverages Bayesian theory and develops an uncertainty-aware online physician recommender system, including a Bayesian deep collaborative filtering (BDCF) model and a novel uncertainty-aware ranking algorithm. Experiments on real-world data demonstrate the superiority of BDCF and the ranking algorithm.

用于不确定性感知在线医生推荐的贝叶斯深度推荐系统
在线医生推荐系统通过自动向患者推荐最合适的医生来减轻信息过载。与一般推荐不同的是,不确定性较大(即患者反馈差异较大)的医生可能不会被优先考虑,因为这可能会影响患者的治疗。然而,大多数现有的推荐系统都没有考虑不确定性,从而降低了系统的可靠性和患者的信任度。为了解决这一问题,本研究利用贝叶斯理论开发了一种不确定性感知在线医生推荐系统,包括贝叶斯深度协同过滤(BDCF)模型和一种新型不确定性感知排名算法。实际数据实验证明了贝叶斯深度协同过滤模型和排序算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信