Young tableau reconstruction via minors

Pub Date : 2024-08-26 DOI:10.1016/j.jcta.2024.105950
William Q. Erickson, Daniel Herden, Jonathan Meddaugh, Mark R. Sepanski, Cordell Hammon, Jasmin Mohn, Indalecio Ruiz-Bolanos
{"title":"Young tableau reconstruction via minors","authors":"William Q. Erickson,&nbsp;Daniel Herden,&nbsp;Jonathan Meddaugh,&nbsp;Mark R. Sepanski,&nbsp;Cordell Hammon,&nbsp;Jasmin Mohn,&nbsp;Indalecio Ruiz-Bolanos","doi":"10.1016/j.jcta.2024.105950","DOIUrl":null,"url":null,"abstract":"<div><p>The tableau reconstruction problem, posed by Monks (2009), asks the following. Starting with a standard Young tableau <em>T</em>, a 1-minor of <em>T</em> is a tableau obtained by first deleting any cell of <em>T</em>, and then performing jeu de taquin slides to fill the resulting gap. This can be iterated to arrive at the set of <em>k</em>-minors of <em>T</em>. The problem is this: given <em>k</em>, what are the values of <em>n</em> such that every tableau of size <em>n</em> can be reconstructed from its set of <em>k</em>-minors? For <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, the problem was recently solved by Cain and Lehtonen. In this paper, we solve the problem for <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, proving the sharp lower bound <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. In the case of multisets of <em>k</em>-minors, we also give a lower bound for arbitrary <em>k</em>, as a first step toward a sharp bound in the general multiset case.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652400089X/pdfft?md5=9b63472f7cd5508023664fdfaa81b914&pid=1-s2.0-S009731652400089X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652400089X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The tableau reconstruction problem, posed by Monks (2009), asks the following. Starting with a standard Young tableau T, a 1-minor of T is a tableau obtained by first deleting any cell of T, and then performing jeu de taquin slides to fill the resulting gap. This can be iterated to arrive at the set of k-minors of T. The problem is this: given k, what are the values of n such that every tableau of size n can be reconstructed from its set of k-minors? For k=1, the problem was recently solved by Cain and Lehtonen. In this paper, we solve the problem for k=2, proving the sharp lower bound n8. In the case of multisets of k-minors, we also give a lower bound for arbitrary k, as a first step toward a sharp bound in the general multiset case.

分享
查看原文
通过未成年人重建幼年台构图
蒙克斯(Monks,2009 年)提出的表元重构问题要求如下。从标准杨表 T 开始,首先删除 T 的任何单元格,然后执行 jeu de taquin 幻灯片来填补空缺,就得到了 T 的 1-minor。问题是:在给定 k 的情况下,n 的取值是多少,使得大小为 n 的每个表头都能从 k 的最小值集合中重建?对于 k=1,该问题最近由 Cain 和 Lehtonen 解决。在本文中,我们解决了 k=2 的问题,证明了 n≥8 的尖锐下限。在 k 个最小值的多集情况下,我们还给出了任意 k 的下界,这是为一般多集情况下的尖锐下界迈出的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信