Uniqueness of dissipative solutions for the Camassa–Holm equation

IF 2.4 2区 数学 Q1 MATHEMATICS
Katrin Grunert
{"title":"Uniqueness of dissipative solutions for the Camassa–Holm equation","authors":"Katrin Grunert","doi":"10.1016/j.jde.2024.08.036","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the Cauchy problem for the Camassa–Holm equation has a unique, global, weak, and dissipative solution for any initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, such that <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>x</mi></mrow></msub></math></span> is bounded from above almost everywhere. In particular, we establish a one-to-one correspondence between the properties specific to the dissipative solutions and a solution operator associating to each initial data exactly one solution.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022039624005187/pdfft?md5=a349f44866e2ca0ff6ed88a2d0a4e246&pid=1-s2.0-S0022039624005187-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005187","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the Cauchy problem for the Camassa–Holm equation has a unique, global, weak, and dissipative solution for any initial data u0H1(R), such that u0,x is bounded from above almost everywhere. In particular, we establish a one-to-one correspondence between the properties specific to the dissipative solutions and a solution operator associating to each initial data exactly one solution.

卡马萨-霍尔姆方程耗散解的唯一性
我们证明,对于任何初始数据 u0∈H1(R),卡马萨-霍姆方程的考希问题都有一个唯一的、全局的、弱的和耗散的解,使得 u0,x 几乎处处都有上界。特别是,我们在耗散解的特有性质与与每个初始数据关联一个解的解算子之间建立了一一对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信