{"title":"Early diagnosis of Parkinson’s disease using a hybrid method of least squares support vector regression and fuzzy clustering","authors":"","doi":"10.1016/j.bbe.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>Parkinson’s disease (PD) is a neurodegenerative disorder that influence brain’s neurological, behavioral, and physiological functions and includes motor and nonmotor manifestations. Although there have been several PD diagnosis systems with supervised machine learning techniques, there are more efforts that need to enhance the accurate detection of PD in its early stage. The current paper developed a novel approach by integrating Least Squares Support Vector Regression (LS-SVR) and Fuzzy Clustering for Unified Parkinson’s Disease Rating Scale (UPDRS) diagnosis. This paper used feature selection and Principal Component Analysis (PCA) to overcome the multicollinearity issues in data. This paper used a large medical dataset including Motor- and Total-UPDRS to demonstrate how the proposed method can improve prediction performance via extensive evaluations and comparisons with existing methods. Compared to other prediction methods, the experimental results demonstrate that the proposed method provided the best accuracy for Total-UPDRS (Root Mean Squared Error = 0.7348; <em>R</em><sup>2</sup> = 0.9169) and Motor-UPDRS (Root Mean Squared Error = 0.8321; <em>R</em><sup>2</sup> = 0.8756) predictions.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000627/pdfft?md5=6bede8ae0475b722db289c4fec906252&pid=1-s2.0-S0208521624000627-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000627","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that influence brain’s neurological, behavioral, and physiological functions and includes motor and nonmotor manifestations. Although there have been several PD diagnosis systems with supervised machine learning techniques, there are more efforts that need to enhance the accurate detection of PD in its early stage. The current paper developed a novel approach by integrating Least Squares Support Vector Regression (LS-SVR) and Fuzzy Clustering for Unified Parkinson’s Disease Rating Scale (UPDRS) diagnosis. This paper used feature selection and Principal Component Analysis (PCA) to overcome the multicollinearity issues in data. This paper used a large medical dataset including Motor- and Total-UPDRS to demonstrate how the proposed method can improve prediction performance via extensive evaluations and comparisons with existing methods. Compared to other prediction methods, the experimental results demonstrate that the proposed method provided the best accuracy for Total-UPDRS (Root Mean Squared Error = 0.7348; R2 = 0.9169) and Motor-UPDRS (Root Mean Squared Error = 0.8321; R2 = 0.8756) predictions.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.