Optimal spread for spanning subgraphs of Dirac hypergraphs

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tom Kelly , Alp Müyesser , Alexey Pokrovskiy
{"title":"Optimal spread for spanning subgraphs of Dirac hypergraphs","authors":"Tom Kelly ,&nbsp;Alp Müyesser ,&nbsp;Alexey Pokrovskiy","doi":"10.1016/j.jctb.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> and <em>H</em> be hypergraphs on <em>n</em> vertices, and suppose <em>H</em> has large enough minimum degree to necessarily contain a copy of <em>G</em> as a subgraph. We give a general method to randomly embed <em>G</em> into <em>H</em> with good “spread”. More precisely, for a wide class of <em>G</em>, we find a randomised embedding <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>↪</mo><mi>H</mi></math></span> with the following property: for every <em>s</em>, for any partial embedding <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <em>s</em> vertices of <em>G</em> into <em>H</em>, the probability that <em>f</em> extends <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is at most <span><math><mi>O</mi><msup><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span>. This is a common generalisation of several streams of research surrounding the classical Dirac-type problem.</p><p>For example, setting <span><math><mi>s</mi><mo>=</mo><mi>n</mi></math></span>, we obtain an asymptotically tight lower bound on the number of embeddings of <em>G</em> into <em>H</em>. This recovers and extends recent results of Glock, Gould, Joos, Kühn, and Osthus and of Montgomery and Pavez-Signé regarding enumerating Hamilton cycles in Dirac hypergraphs. Moreover, using the recent developments surrounding the Kahn–Kalai conjecture, this result implies that many Dirac-type results hold robustly, meaning <em>G</em> still embeds into <em>H</em> after a random sparsification of its edge set. This allows us to recover a recent result of Kang, Kelly, Kühn, Osthus, and Pfenninger and of Pham, Sah, Sawhney, and Simkin for perfect matchings, and obtain novel results for Hamilton cycles and factors in Dirac hypergraphs.</p><p>Notably, our randomised embedding algorithm is self-contained and does not require Szemerédi's regularity lemma or iterative absorption.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000728/pdfft?md5=533c17ed0f6d70854b2dd9d401343fd1&pid=1-s2.0-S0095895624000728-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000728","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let G and H be hypergraphs on n vertices, and suppose H has large enough minimum degree to necessarily contain a copy of G as a subgraph. We give a general method to randomly embed G into H with good “spread”. More precisely, for a wide class of G, we find a randomised embedding f:GH with the following property: for every s, for any partial embedding f of s vertices of G into H, the probability that f extends f is at most O(1/n)s. This is a common generalisation of several streams of research surrounding the classical Dirac-type problem.

For example, setting s=n, we obtain an asymptotically tight lower bound on the number of embeddings of G into H. This recovers and extends recent results of Glock, Gould, Joos, Kühn, and Osthus and of Montgomery and Pavez-Signé regarding enumerating Hamilton cycles in Dirac hypergraphs. Moreover, using the recent developments surrounding the Kahn–Kalai conjecture, this result implies that many Dirac-type results hold robustly, meaning G still embeds into H after a random sparsification of its edge set. This allows us to recover a recent result of Kang, Kelly, Kühn, Osthus, and Pfenninger and of Pham, Sah, Sawhney, and Simkin for perfect matchings, and obtain novel results for Hamilton cycles and factors in Dirac hypergraphs.

Notably, our randomised embedding algorithm is self-contained and does not require Szemerédi's regularity lemma or iterative absorption.

狄拉克超图的跨度子图的最佳展布
假设 G 和 H 是 n 个顶点上的超图,又假设 H 的最小度数足够大,必然包含 G 的子图副本。我们给出了一种将 G 随机嵌入 H 且 "传播 "良好的通用方法。更确切地说,对于一类广泛的 G,我们可以找到具有以下性质的随机嵌入 f:GH:对于每 s,对于 G 的 s 个顶点的任何部分嵌入 f′ 到 H,f 扩展 f′ 的概率至多为 O(1/n)s。这是对围绕经典狄拉克型问题的若干研究流的共同概括。例如,设定 s=n,我们得到了 G 嵌入 H 的数量的渐近紧密下限。这恢复并扩展了格洛克、古尔德、约斯、库恩和奥斯特胡斯以及蒙哥马利和帕维斯-西涅关于列举狄拉克超图中的汉密尔顿循环的最新结果。此外,利用围绕卡恩-卡莱猜想(Kahn-Kalai conjecture)的最新进展,这一结果意味着许多狄拉克类型的结果稳健地成立,也就是说,在对 G 的边集进行随机稀疏化之后,G 仍然嵌入 H 中。这使我们能够恢复 Kang、Kelly、Kühn、Osthus 和 Pfenninger 以及 Pham、Sah、Sawhney 和 Simkin 最近关于完全匹配的结果,并获得关于 Dirac 超图中汉密尔顿循环和因子的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信