Discontinuous Galerkin methods for magnetic advection-diffusion problems

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jindong Wang, Shuonan Wu
{"title":"Discontinuous Galerkin methods for magnetic advection-diffusion problems","authors":"Jindong Wang,&nbsp;Shuonan Wu","doi":"10.1016/j.camwa.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><p>We devise and analyze a class of the primal discontinuous Galerkin methods for magnetic advection-diffusion problems based on the weighted-residual approach. In addition to the upwind stabilization, we explore some terms related to convection under the vector case that provides more flexibility in constructing the schemes. Under a degenerate Friedrichs system, we show the stability and optimal error estimate, which boil down to two ingredients – the weight function and the special projection – that contain information of advection. Numerical experiments are provided to verify the theoretical results.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212400381X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We devise and analyze a class of the primal discontinuous Galerkin methods for magnetic advection-diffusion problems based on the weighted-residual approach. In addition to the upwind stabilization, we explore some terms related to convection under the vector case that provides more flexibility in constructing the schemes. Under a degenerate Friedrichs system, we show the stability and optimal error estimate, which boil down to two ingredients – the weight function and the special projection – that contain information of advection. Numerical experiments are provided to verify the theoretical results.

磁平流扩散问题的非连续伽勒金方法
我们设计并分析了一类基于加权残差法的磁对流-扩散问题的基元非连续伽勒金方法。除了上风稳定外,我们还探讨了矢量情况下与对流相关的一些术语,这为构建方案提供了更大的灵活性。在退化弗里德里希斯系统下,我们展示了稳定性和最优误差估计,这归结为两个包含平流信息的要素--权重函数和特殊投影。我们还提供了数值实验来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信