A survey on reconfigurable intelligent surfaces assisted multi-access edge computing networks: State of the art and future challenges

IF 13.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Manzoor Ahmed , Salman Raza , Aized Amin Soofi , Feroz Khan , Wali Ullah Khan , Fang Xu , Symeon Chatzinotas , Octavia A. Dobre , Zhu Han
{"title":"A survey on reconfigurable intelligent surfaces assisted multi-access edge computing networks: State of the art and future challenges","authors":"Manzoor Ahmed ,&nbsp;Salman Raza ,&nbsp;Aized Amin Soofi ,&nbsp;Feroz Khan ,&nbsp;Wali Ullah Khan ,&nbsp;Fang Xu ,&nbsp;Symeon Chatzinotas ,&nbsp;Octavia A. Dobre ,&nbsp;Zhu Han","doi":"10.1016/j.cosrev.2024.100668","DOIUrl":null,"url":null,"abstract":"<div><p>This survey provides a comprehensive analysis of the integration of Reconfigurable Intelligent Surfaces (RIS) with edge computing, underscoring RIS’s critical role in advancing wireless communication networks. The examination begins by demystifying edge computing, contrasting it with traditional cloud computing, and categorizing it into several types. It further delves into advanced edge computing models like Multi-Access Edge Computing (MEC), Vehicle Fog Computing (VFC), and Vehicle Edge Computing (VEC) and challenges. Progressing deeper, the survey explores RIS technology, categorizing it into passive, active, and hybrid RIS, and offers an in-depth analysis of Beyond Diagonal RIS (BD-RIS), including reflective, transmissive, and Simultaneous Transmit and Reflect (STAR) modes. Subsequently, the study assesses RIS’s applications within edge computing, revealing its diverse use cases and strategies for performance analysis. The discussion comprises how RIS-driven computation can elevate rates, reduce latency, and contribute to an eco-friendly edge computing approach through better Energy Efficiency (EE). The survey also scrutinizes RIS’s role in bolstering security within edge computing. To aid comprehension, each subsection is complemented by summary tables that meticulously elaborate on, compare, and evaluate the literature, focusing on aspects like system models, scenarios, RIS details, Channel State Information (CSI), offloading types, employed schemes, methodologies, and proposed solutions. This organized approach ensures a cohesive and thorough exploration of the survey’s diverse topics. By illustrating the synergy between RIS and edge computing, the study provides valuable insights or lessons learned for enhancing wireless networks, paving the way for future breakthroughs in communication technologies. Before conclusion, the survey also identifies ongoing challenges and future research directions in RIS-assisted edge computing, emphasizing the vast potential of this field.</p></div>","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574013724000522","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This survey provides a comprehensive analysis of the integration of Reconfigurable Intelligent Surfaces (RIS) with edge computing, underscoring RIS’s critical role in advancing wireless communication networks. The examination begins by demystifying edge computing, contrasting it with traditional cloud computing, and categorizing it into several types. It further delves into advanced edge computing models like Multi-Access Edge Computing (MEC), Vehicle Fog Computing (VFC), and Vehicle Edge Computing (VEC) and challenges. Progressing deeper, the survey explores RIS technology, categorizing it into passive, active, and hybrid RIS, and offers an in-depth analysis of Beyond Diagonal RIS (BD-RIS), including reflective, transmissive, and Simultaneous Transmit and Reflect (STAR) modes. Subsequently, the study assesses RIS’s applications within edge computing, revealing its diverse use cases and strategies for performance analysis. The discussion comprises how RIS-driven computation can elevate rates, reduce latency, and contribute to an eco-friendly edge computing approach through better Energy Efficiency (EE). The survey also scrutinizes RIS’s role in bolstering security within edge computing. To aid comprehension, each subsection is complemented by summary tables that meticulously elaborate on, compare, and evaluate the literature, focusing on aspects like system models, scenarios, RIS details, Channel State Information (CSI), offloading types, employed schemes, methodologies, and proposed solutions. This organized approach ensures a cohesive and thorough exploration of the survey’s diverse topics. By illustrating the synergy between RIS and edge computing, the study provides valuable insights or lessons learned for enhancing wireless networks, paving the way for future breakthroughs in communication technologies. Before conclusion, the survey also identifies ongoing challenges and future research directions in RIS-assisted edge computing, emphasizing the vast potential of this field.

可重构智能表面辅助多接入边缘计算网络调查:技术现状与未来挑战
本调查报告全面分析了可重构智能表面(RIS)与边缘计算的整合,强调了 RIS 在推动无线通信网络发展中的关键作用。研究首先揭开了边缘计算的神秘面纱,将其与传统云计算进行对比,并将其分为几种类型。报告进一步深入探讨了先进的边缘计算模型,如多接入边缘计算(MEC)、车载雾计算(VFC)和车载边缘计算(VEC)以及面临的挑战。随着研究的深入,该报告探讨了RIS技术,将其分为被动式、主动式和混合式RIS,并深入分析了超对角线RIS(BD-RIS),包括反射式、透射式和同步传输与反射(STAR)模式。随后,研究评估了 RIS 在边缘计算中的应用,揭示了其不同的使用案例和性能分析策略。讨论内容包括 RIS 驱动的计算如何提高速率、减少延迟,以及如何通过提高能效 (EE) 促进生态友好型边缘计算方法。调查还仔细研究了 RIS 在增强边缘计算安全性方面的作用。为了帮助理解,每个小节都配有摘要表,对文献进行细致的阐述、比较和评估,重点关注系统模型、场景、RIS 详情、信道状态信息 (CSI)、卸载类型、采用的方案、方法和建议的解决方案等方面。这种有条不紊的方法确保了对调查的不同主题进行连贯而深入的探讨。通过说明 RIS 与边缘计算之间的协同作用,本研究为增强无线网络提供了宝贵的见解或经验教训,为未来通信技术的突破铺平了道路。最后,调查还指出了 RIS 辅助边缘计算所面临的挑战和未来的研究方向,强调了这一领域的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Science Review
Computer Science Review Computer Science-General Computer Science
CiteScore
32.70
自引率
0.00%
发文量
26
审稿时长
51 days
期刊介绍: Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信