Yizhi Ge , Haitao Liu , Wenxuan Huang , Huanfeng Zhu , Dan Zong , Xia He
{"title":"Immunoinhibitory effects of hypoxia-driven reprogramming of EGR1hi and EGR3 positive B cells in the nasopharyngeal carcinoma microenvironment","authors":"Yizhi Ge , Haitao Liu , Wenxuan Huang , Huanfeng Zhu , Dan Zong , Xia He","doi":"10.1016/j.oraloncology.2024.106999","DOIUrl":null,"url":null,"abstract":"<div><p>Regulatory B (Breg) cells is a type of immune cell that exhibit immunosuppressive behavior within the tumor microenvironment. However, the differentiation and regulatory mechanisms of these Breg cells remain unexplored. Single-cell transcriptome sequencing analysis of human nasopharyngeal carcinoma (NPC) revealed a significant enrichment of B cell subset characterized by high expression of EGR1 and EGR3 in the tumor microenvironment. Notably, in the hypoxic microenvironment, these B cells induce MAPK pathway activation, subsequently triggering the activation of transcription factors EGR1 and EGR3, which further modulate the expression of immunosuppressive factors like TGFB1 and IL10. In transplant experiments using primary B cells induced under hypoxia and co-transplanted with cancer cells, a significant increase in tumor growth was observed. Mechanism experiments demonstrated that EGR1<sup>hi</sup> and EGR3<sup>+</sup> B cells further activate the maturation and immunosuppressive function of Treg cells through the secretion of IL16 and TNF-α. Hence, this study identifies the key transcription factors EGR1 and EGR3 as essential regulators and elucidates the differentiation of Breg cells under hypoxic conditions.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368837524003178","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Regulatory B (Breg) cells is a type of immune cell that exhibit immunosuppressive behavior within the tumor microenvironment. However, the differentiation and regulatory mechanisms of these Breg cells remain unexplored. Single-cell transcriptome sequencing analysis of human nasopharyngeal carcinoma (NPC) revealed a significant enrichment of B cell subset characterized by high expression of EGR1 and EGR3 in the tumor microenvironment. Notably, in the hypoxic microenvironment, these B cells induce MAPK pathway activation, subsequently triggering the activation of transcription factors EGR1 and EGR3, which further modulate the expression of immunosuppressive factors like TGFB1 and IL10. In transplant experiments using primary B cells induced under hypoxia and co-transplanted with cancer cells, a significant increase in tumor growth was observed. Mechanism experiments demonstrated that EGR1hi and EGR3+ B cells further activate the maturation and immunosuppressive function of Treg cells through the secretion of IL16 and TNF-α. Hence, this study identifies the key transcription factors EGR1 and EGR3 as essential regulators and elucidates the differentiation of Breg cells under hypoxic conditions.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.