Fabrication of stable spherical soybean lipophilic protein nanogel for curcumin delivery: Carbony oxygen and aromatic ring flexibility binding to the beta−barrel
Jianhua Zeng , Junzhe Zou , Lanwei Zhang , Jinlong Zhao , Linlin Liu , Gen Lu , Bingyu Sun , Yanguo Shi , Xiuqing Zhu , Pimin Gong
{"title":"Fabrication of stable spherical soybean lipophilic protein nanogel for curcumin delivery: Carbony oxygen and aromatic ring flexibility binding to the beta−barrel","authors":"Jianhua Zeng , Junzhe Zou , Lanwei Zhang , Jinlong Zhao , Linlin Liu , Gen Lu , Bingyu Sun , Yanguo Shi , Xiuqing Zhu , Pimin Gong","doi":"10.1016/j.foostr.2024.100386","DOIUrl":null,"url":null,"abstract":"<div><p>Soybean lipophilic protein (SLP), which comprises approximately 10 % polar lipids (especially phosphatidylcholine (PC)) in glycinin (11S) and β-conglycinin (7S), is a potentially effective delivery for nutraceuticals. Herein, we successfully engineered a stable spherical soybean lipophilic protein nanogel through a pH−shift treatment at its isoelectric point, designed for the efficient delivery of curcumin (Cur) to enhance its bioavailability. The analysis of the physicochemical and structural properties of the SLP−nanogel revealed its exceptional encapsulation efficiency, achieving 93.52 %, surpassing that of soybean isolated protein at 83.67 %. Moreover, the loading ability experienced a remarkable 8.7−fold increase, reaching 13.02 μg/mg. Fluorescence kinetics analysis reveals that Cur selectively binds to a single site on 7SPC/11SPC, predominantly through van der Waals forces and hydrogen bonds. Molecular dynamics results revealed that the pH−shifted treatment expanded the beta−barrel volume of 7SPC/11SPC, enhancing the binding affinity between 7SPC/11SPC and Cur by forming H−bonds and pi−H interaction in the beta−barrel regions of K232−Y388 (7SPC) and D300−I410 (11SPC). Our findings provided a novel and effective way to prepare stable spherical nanogels for delivering Cur and a novel insight into the binding mechanism between Cur and 11SPC/7SPC.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"41 ","pages":"Article 100386"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329124000224","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soybean lipophilic protein (SLP), which comprises approximately 10 % polar lipids (especially phosphatidylcholine (PC)) in glycinin (11S) and β-conglycinin (7S), is a potentially effective delivery for nutraceuticals. Herein, we successfully engineered a stable spherical soybean lipophilic protein nanogel through a pH−shift treatment at its isoelectric point, designed for the efficient delivery of curcumin (Cur) to enhance its bioavailability. The analysis of the physicochemical and structural properties of the SLP−nanogel revealed its exceptional encapsulation efficiency, achieving 93.52 %, surpassing that of soybean isolated protein at 83.67 %. Moreover, the loading ability experienced a remarkable 8.7−fold increase, reaching 13.02 μg/mg. Fluorescence kinetics analysis reveals that Cur selectively binds to a single site on 7SPC/11SPC, predominantly through van der Waals forces and hydrogen bonds. Molecular dynamics results revealed that the pH−shifted treatment expanded the beta−barrel volume of 7SPC/11SPC, enhancing the binding affinity between 7SPC/11SPC and Cur by forming H−bonds and pi−H interaction in the beta−barrel regions of K232−Y388 (7SPC) and D300−I410 (11SPC). Our findings provided a novel and effective way to prepare stable spherical nanogels for delivering Cur and a novel insight into the binding mechanism between Cur and 11SPC/7SPC.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.