Graphs with degree sequence {(m−1)m,(n−1)n} and {mn,nm}

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Boris Brimkov , Valentin Brimkov
{"title":"Graphs with degree sequence {(m−1)m,(n−1)n} and {mn,nm}","authors":"Boris Brimkov ,&nbsp;Valentin Brimkov","doi":"10.1016/j.dam.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the class of graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> that have the same degree sequence as two disjoint cliques <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, as well as the class <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> of the complements of such graphs. We establish various properties of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> related to recognition, connectivity, diameter, bipartiteness, Hamiltonicity, and pancyclicity. We also show that several classical optimization problems on these graphs are NP-hard, while others can be solved efficiently.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"358 ","pages":"Pages 477-486"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003627","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the class of graphs Gm,n that have the same degree sequence as two disjoint cliques Km and Kn, as well as the class G¯m,n of the complements of such graphs. We establish various properties of Gm,n and G¯m,n related to recognition, connectivity, diameter, bipartiteness, Hamiltonicity, and pancyclicity. We also show that several classical optimization problems on these graphs are NP-hard, while others can be solved efficiently.

阶数序列为 {(m-1)m,(n-1)n} 和 {mn,nm} 的图形
在本文中,我们研究了与两个不相交的小群 Km 和 Kn 具有相同度序列的一类图 Gm,n,以及这类图的补集 G¯m,n。我们建立了 Gm,n 和 G¯m,n 的与识别、连通性、直径、两部分性、汉密尔顿性和泛周期性有关的各种性质。我们还证明了这些图上的几个经典优化问题是 NP-困难的,而其他问题则可以高效求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信