{"title":"Reconstruction of Gold Surface with Excessive Sulfur Source During Transition Metal Disulfide Growth","authors":"Yuling Yin, Jia Li* and Feng Ding*, ","doi":"10.1021/prechem.4c0001810.1021/prechem.4c00018","DOIUrl":null,"url":null,"abstract":"<p >The inert gold substrate is one of the most commonly used substrates for synthesizing transition metal dichalcogenides (TMDCs), while the growth mechanism of TMDCs on gold substrates in a sulfur-rich environment is still unclear. Based on density functional theory calculations, we explored the reconstruction of the gold surface in a sulfur-rich environment, which is one of the conditions for the growth of TMDCs. We clearly revealed that both Au(100) and Au(111) surfaces tend to form metal sulfide buffer layers between TMDCs and the metallic substrate, which are the square pattern of Au4S4 on Au(100) surface and the hexagonal pattern of Au6S6 on Au(111) surface, respectively. In the sulfur-rich environment, both square and hexagonal patterns are energetically highly stable, greatly weakening the interaction between TMDCs and the substrate. Interestingly, both buffer layers inherit the symmetry of the substrate and thus have no significant effect on the growth behavior of TMDCs. This study explains many experimental puzzles and elucidates the growth behavior of 2D materials on various substrates.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 8","pages":"414–420 414–420"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/prechem.4c00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The inert gold substrate is one of the most commonly used substrates for synthesizing transition metal dichalcogenides (TMDCs), while the growth mechanism of TMDCs on gold substrates in a sulfur-rich environment is still unclear. Based on density functional theory calculations, we explored the reconstruction of the gold surface in a sulfur-rich environment, which is one of the conditions for the growth of TMDCs. We clearly revealed that both Au(100) and Au(111) surfaces tend to form metal sulfide buffer layers between TMDCs and the metallic substrate, which are the square pattern of Au4S4 on Au(100) surface and the hexagonal pattern of Au6S6 on Au(111) surface, respectively. In the sulfur-rich environment, both square and hexagonal patterns are energetically highly stable, greatly weakening the interaction between TMDCs and the substrate. Interestingly, both buffer layers inherit the symmetry of the substrate and thus have no significant effect on the growth behavior of TMDCs. This study explains many experimental puzzles and elucidates the growth behavior of 2D materials on various substrates.
期刊介绍:
Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.