Mohammed A. Khelkhal , Olga V. Ostolopovskaya , Aleksey V. Dengaev , Alexey V. Vakhin
{"title":"Kinetic investigation of aschalcha heavy oil oxidation in the presence of cobalt biocatalysts during in-situ combustion","authors":"Mohammed A. Khelkhal , Olga V. Ostolopovskaya , Aleksey V. Dengaev , Alexey V. Vakhin","doi":"10.1016/j.tca.2024.179854","DOIUrl":null,"url":null,"abstract":"<div><p>The catalytic effect of cobalt tall oil and cobalt sunflower oil catalysts on the oxidation kinetics of heavy crude oil was investigated in this study. Comprehensive kinetic analyses, employing differential scanning calorimetry, thermogravimetric analysis, and kinetic modeling techniques, revealed that the presence of these catalysts significantly influenced the oxidation behavior of heavy oil. The catalysts exhibited pronounced shifts in the DSC and TG curves towards lower temperatures, indicating facilitated initiation of oxidation reactions at lower onset temperatures. Quantitative kinetic parameters, including activation energies and frequency factors, were determined using the Friedman and Kissinger-Akahira-Sunose analyses. The cobalt tall oil catalyst demonstrated superior performance, effectively lowering the activation energy barrier and increasing oxidation rates, particularly at higher conversion degrees. Catalyst characterization techniques, including X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy, revealed the formation of highly crystalline cobalt oxide nanoparticles with optimal dispersion and size distribution, as well as the presence of favorable functional groups for surface interactions. The results elucidated the role of these catalysts in facilitating the oxidation process through the provision of active sites, altered reaction pathways, favorable steric environments, and efficient oxygen activation capabilities. These findings contribute to the development of efficient catalytic systems for heavy oil upgrading processes and offer insights for further optimization of catalyst properties to achieve desired oxidation kinetics behavior.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004060312400193X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The catalytic effect of cobalt tall oil and cobalt sunflower oil catalysts on the oxidation kinetics of heavy crude oil was investigated in this study. Comprehensive kinetic analyses, employing differential scanning calorimetry, thermogravimetric analysis, and kinetic modeling techniques, revealed that the presence of these catalysts significantly influenced the oxidation behavior of heavy oil. The catalysts exhibited pronounced shifts in the DSC and TG curves towards lower temperatures, indicating facilitated initiation of oxidation reactions at lower onset temperatures. Quantitative kinetic parameters, including activation energies and frequency factors, were determined using the Friedman and Kissinger-Akahira-Sunose analyses. The cobalt tall oil catalyst demonstrated superior performance, effectively lowering the activation energy barrier and increasing oxidation rates, particularly at higher conversion degrees. Catalyst characterization techniques, including X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy, revealed the formation of highly crystalline cobalt oxide nanoparticles with optimal dispersion and size distribution, as well as the presence of favorable functional groups for surface interactions. The results elucidated the role of these catalysts in facilitating the oxidation process through the provision of active sites, altered reaction pathways, favorable steric environments, and efficient oxygen activation capabilities. These findings contribute to the development of efficient catalytic systems for heavy oil upgrading processes and offer insights for further optimization of catalyst properties to achieve desired oxidation kinetics behavior.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes