Effects of active silicon amendment on Pb(II)/Cd(II) adsorption: Performance evaluation and mechanism.

Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-23 DOI:10.1016/j.jhazmat.2024.135614
Xueqin Jiang, Zhenyuan Liu, Bo Yan, Lingzhi Zhao, Tao Chen, Xiaofan Yang
{"title":"Effects of active silicon amendment on Pb(II)/Cd(II) adsorption: Performance evaluation and mechanism.","authors":"Xueqin Jiang, Zhenyuan Liu, Bo Yan, Lingzhi Zhao, Tao Chen, Xiaofan Yang","doi":"10.1016/j.jhazmat.2024.135614","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a high-Si (Si) adsorbent (APR@Sam) was prepared by acid leaching slag (APR) from lead-zinc (Pb-Zn) tailings based on high-temperature alkali melting technology. The synthesized Si-based materials were applied to aqueous solutions contaminated with Pb and cadmium (Cd) to investigate the crucial role of active Si in sequestering heavy metals. The adsorption capacities of APR@Sam and the Si-depleted material (APR@Sam-NSi) were studied under different pH and temperature conditions. The results showed that as the pH increased from 3 to 7, the adsorption capacity increased, the active Si content in the solution increased by 63 %, and the maximum pH of the solution after adsorption was 7.12. After the removal of active Si, the Pb (II) and Cd (II) adsorption capacities of APR@Sam decreased by 45 % and 11.96 %, respectively. OH- promoted the release of Si into the solution, enhancing the material's adsorption efficiency. The reaction mechanism is mainly attributed to surface complexation guided by Si-O and Si-O-Si bonds, metal cation exchange, and bidentate coordination. The results indicated that the Si component is critical for the removal of Pb (II) and Cd (II) by APR@Sam and provide valuable insights into resource recovery strategies from leaching residues.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135614"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a high-Si (Si) adsorbent (APR@Sam) was prepared by acid leaching slag (APR) from lead-zinc (Pb-Zn) tailings based on high-temperature alkali melting technology. The synthesized Si-based materials were applied to aqueous solutions contaminated with Pb and cadmium (Cd) to investigate the crucial role of active Si in sequestering heavy metals. The adsorption capacities of APR@Sam and the Si-depleted material (APR@Sam-NSi) were studied under different pH and temperature conditions. The results showed that as the pH increased from 3 to 7, the adsorption capacity increased, the active Si content in the solution increased by 63 %, and the maximum pH of the solution after adsorption was 7.12. After the removal of active Si, the Pb (II) and Cd (II) adsorption capacities of APR@Sam decreased by 45 % and 11.96 %, respectively. OH- promoted the release of Si into the solution, enhancing the material's adsorption efficiency. The reaction mechanism is mainly attributed to surface complexation guided by Si-O and Si-O-Si bonds, metal cation exchange, and bidentate coordination. The results indicated that the Si component is critical for the removal of Pb (II) and Cd (II) by APR@Sam and provide valuable insights into resource recovery strategies from leaching residues.

活性硅修正对铅(II)/镉(II)吸附的影响:性能评估与机理。
本研究基于高温碱熔技术,利用铅锌尾矿酸浸渣(APR)制备了一种高硅(Si)吸附剂(APR@Sam)。将合成的硅基材料应用于铅和镉(Cd)污染的水溶液中,研究活性硅在重金属吸附中的关键作用。在不同的 pH 值和温度条件下,研究了 APR@Sam 和缺硅材料(APR@Sam-NSi)的吸附能力。结果表明,当 pH 值从 3 升至 7 时,吸附容量增加,溶液中的活性硅含量增加了 63%,吸附后溶液的最大 pH 值为 7.12。活性硅被去除后,APR@Sam 对铅(II)和镉(II)的吸附容量分别下降了 45% 和 11.96%。OH- 促进了硅向溶液中的释放,提高了材料的吸附效率。反应机理主要归因于 Si-O 和 Si-O-Si 键引导的表面络合、金属阳离子交换和双齿配位。结果表明,Si 成分是 APR@Sam 去除铅 (II) 和镉 (II) 的关键,并为从浸出残留物中回收资源的策略提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信