Zhihui Jia, Zimin Niu, Jia Ji Wang, Jose Hernandez, Yu Ting Li, Harry H X Wang
{"title":"Trajectories of Treatment Burden Among Primary Care Patients with Long-Term Conditions in Southern China: A Latent Class Growth Analysis.","authors":"Zhihui Jia, Zimin Niu, Jia Ji Wang, Jose Hernandez, Yu Ting Li, Harry H X Wang","doi":"10.2147/RMHP.S464434","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Treatment burden is a patient-centred, dynamic concept. However, longitudinal data on the changing pattern of treatment burden among patients with one or more long-term conditions (LTCs) are relatively scanty. We aimed to explore the longitudinal trajectories of treatment burden and associated risk factors in a large, patient population in primary care settings.</p><p><strong>Methods: </strong>We analysed data from 5573 primary care patients with long-term conditions (LTCs) recruited using a multistage sampling method in Shenzhen, southern China. The treatment burden was assessed by the Mandarin Chinese version of the Treatment Burden Questionnaire (TBQ). We used latent class growth mixture modelling (LCGMM) to determine trajectories of treatment burden across four time points, ie, at baseline, and at 6, 12, and 18 months. Predictors of trajectory classes were explored using multivariable logistic regression analysis.</p><p><strong>Results: </strong>The mean TBQ scores of patients with a single LTC (n = 2756), 2 LTCs (n = 1871), 3 LTCs (n = 699), and ≥4 LTCs (n = 247) were 18.17, 20.28, 21.32, and 26.10, respectively, at baseline. LCGMM identified three discrete classes of treatment burden trajectories over time, ie, a high-increasing class, a low-stable class, and a high-decreasing class. When controlling for individual-level factors including age, education, monthly household income per head, smoking, alcohol consumption, and attendance in health education, patients who had a clinical diagnosis of 3 LTCs (adjusted odds ratio [aOR] = 1.49, 95% CI = 1.21-1.86, <i>P</i> < 0.001) or ≥4 LTCs (aOR = 1.97, 95% CI = 1.44-2.72, <i>P</i> < 0.001) were more likely to belong to the high-increasing class. Sensitivity analysis using propensity score methods obtained similar results.</p><p><strong>Conclusion: </strong>Our study revealed the presence of discrete patterns of treatment burden over time in Chinese primary care patients with LTCs, providing directions for tailored interventions to optimise disease management. Patients with 3 or more LTCs should receive close attention in healthcare delivery as they tend to experience a greater treatment burden.</p>","PeriodicalId":56009,"journal":{"name":"Risk Management and Healthcare Policy","volume":"17 ","pages":"2009-2021"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346491/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management and Healthcare Policy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/RMHP.S464434","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Treatment burden is a patient-centred, dynamic concept. However, longitudinal data on the changing pattern of treatment burden among patients with one or more long-term conditions (LTCs) are relatively scanty. We aimed to explore the longitudinal trajectories of treatment burden and associated risk factors in a large, patient population in primary care settings.
Methods: We analysed data from 5573 primary care patients with long-term conditions (LTCs) recruited using a multistage sampling method in Shenzhen, southern China. The treatment burden was assessed by the Mandarin Chinese version of the Treatment Burden Questionnaire (TBQ). We used latent class growth mixture modelling (LCGMM) to determine trajectories of treatment burden across four time points, ie, at baseline, and at 6, 12, and 18 months. Predictors of trajectory classes were explored using multivariable logistic regression analysis.
Results: The mean TBQ scores of patients with a single LTC (n = 2756), 2 LTCs (n = 1871), 3 LTCs (n = 699), and ≥4 LTCs (n = 247) were 18.17, 20.28, 21.32, and 26.10, respectively, at baseline. LCGMM identified three discrete classes of treatment burden trajectories over time, ie, a high-increasing class, a low-stable class, and a high-decreasing class. When controlling for individual-level factors including age, education, monthly household income per head, smoking, alcohol consumption, and attendance in health education, patients who had a clinical diagnosis of 3 LTCs (adjusted odds ratio [aOR] = 1.49, 95% CI = 1.21-1.86, P < 0.001) or ≥4 LTCs (aOR = 1.97, 95% CI = 1.44-2.72, P < 0.001) were more likely to belong to the high-increasing class. Sensitivity analysis using propensity score methods obtained similar results.
Conclusion: Our study revealed the presence of discrete patterns of treatment burden over time in Chinese primary care patients with LTCs, providing directions for tailored interventions to optimise disease management. Patients with 3 or more LTCs should receive close attention in healthcare delivery as they tend to experience a greater treatment burden.
期刊介绍:
Risk Management and Healthcare Policy is an international, peer-reviewed, open access journal focusing on all aspects of public health, policy and preventative measures to promote good health and improve morbidity and mortality in the population. Specific topics covered in the journal include:
Public and community health
Policy and law
Preventative and predictive healthcare
Risk and hazard management
Epidemiology, detection and screening
Lifestyle and diet modification
Vaccination and disease transmission/modification programs
Health and safety and occupational health
Healthcare services provision
Health literacy and education
Advertising and promotion of health issues
Health economic evaluations and resource management
Risk Management and Healthcare Policy focuses on human interventional and observational research. The journal welcomes submitted papers covering original research, clinical and epidemiological studies, reviews and evaluations, guidelines, expert opinion and commentary, and extended reports. Case reports will only be considered if they make a valuable and original contribution to the literature. The journal does not accept study protocols, animal-based or cell line-based studies.