Short communication: An alternative pathway for melatonin synthesis in the skin of European flounder (Platichthys flesus)

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Magdalena Gozdowska , Joanna Stoń-Egiert , Ewa Kulczykowska
{"title":"Short communication: An alternative pathway for melatonin synthesis in the skin of European flounder (Platichthys flesus)","authors":"Magdalena Gozdowska ,&nbsp;Joanna Stoń-Egiert ,&nbsp;Ewa Kulczykowska","doi":"10.1016/j.cbpa.2024.111731","DOIUrl":null,"url":null,"abstract":"<div><p>The classic melatonin biosynthesis pathway (Mel; <em>N</em>-acetyl-5-methoxytryptamine) involves two consecutive enzymatic steps that are decisive in hormone production: conversion of serotonin (5-hydroxytryptamine; 5-HT) to <em>N</em>-acetylserotonin (NAS) and the methylation of the last compound to Mel. This pathway requires the activity of the enzymes: the first is of the category of <em>N</em>-acetyltransferases (AANAT, SNAT, or NAT) and the second is <em>N</em>-acetylserotonin <em>O</em>-methyltransferase (ASMT; also known as HIOMT). However, quite recently, new information has been provided on the possibility of an alternative Mel synthesis pathway; it would include a two-step action by these enzymes, but in reverse order, where ASMT (or ASMTL, the enzyme related to ASMT) methylates 5-HT to 5-methoxytryptamine (5-MT), and then the last compound is acetylated by an enzyme of the category of <em>N</em>-acetyltransferases to Mel. In our study on the activity of enzymes in the Mel biosynthesis pathway in flounder skin, we have found an increase in 5-MT level, as a result of the increase in 5-HT concentration, which is followed by a growing concentration of Mel. However, we have not found any increase in Mel concentration, despite an increase in NAS in the samples. Our data strongly suggest an alternative way of Mel production in flounder skin in which 5-HT is first methylated to 5-MT, which is then acetylated to Mel.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1095643324001582/pdfft?md5=de7ed18ba362c8eb57e3503b0409ae25&pid=1-s2.0-S1095643324001582-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643324001582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The classic melatonin biosynthesis pathway (Mel; N-acetyl-5-methoxytryptamine) involves two consecutive enzymatic steps that are decisive in hormone production: conversion of serotonin (5-hydroxytryptamine; 5-HT) to N-acetylserotonin (NAS) and the methylation of the last compound to Mel. This pathway requires the activity of the enzymes: the first is of the category of N-acetyltransferases (AANAT, SNAT, or NAT) and the second is N-acetylserotonin O-methyltransferase (ASMT; also known as HIOMT). However, quite recently, new information has been provided on the possibility of an alternative Mel synthesis pathway; it would include a two-step action by these enzymes, but in reverse order, where ASMT (or ASMTL, the enzyme related to ASMT) methylates 5-HT to 5-methoxytryptamine (5-MT), and then the last compound is acetylated by an enzyme of the category of N-acetyltransferases to Mel. In our study on the activity of enzymes in the Mel biosynthesis pathway in flounder skin, we have found an increase in 5-MT level, as a result of the increase in 5-HT concentration, which is followed by a growing concentration of Mel. However, we have not found any increase in Mel concentration, despite an increase in NAS in the samples. Our data strongly suggest an alternative way of Mel production in flounder skin in which 5-HT is first methylated to 5-MT, which is then acetylated to Mel.

Abstract Image

简短通讯:欧洲比目鱼(Platichthys flesus)皮肤合成褪黑激素的替代途径。
经典的褪黑激素生物合成途径(Mel;N-乙酰基-5-甲氧基色胺)包括两个连续的酶促步骤,它们对激素的产生起着决定性作用:将血清素(5-羟色胺;5-HT)转化为 N-乙酰羟色胺(NAS),并将最后一种化合物甲基化为 Mel。这一途径需要酶的活性:第一种酶属于 N-乙酰转移酶(AANAT、SNAT 或 NAT),第二种酶属于 N-乙酰羟色胺 O-甲基转移酶(ASMT,又称 HIOMT)。不过,最近有新的信息表明,可能存在另一种 Mel 合成途径;它包括这些酶的两步作用,但顺序相反,即 ASMT(或 ASMTL,与 ASMT 有关的酶)将 5-HT 甲基化为 5-甲氧基色胺(5-MT),然后最后一种化合物被 N-乙酰转移酶类的一种酶乙酰化为 Mel。在我们对比目鱼皮肤中 Mel 生物合成途径中酶的活性进行的研究中,我们发现 5-MT 的含量会随着 5-HT 浓度的增加而增加,随后 Mel 的浓度也会增加。然而,尽管样本中的 NAS 增加了,我们却没有发现 Mel 浓度有任何增加。我们的数据有力地证明了比目鱼皮肤中产生 Mel 的另一种方式,即 5-HT 首先甲基化为 5-MT,然后乙酰化为 Mel。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信