Longitudinal Changes of CT-radiomic and Systemic Inflammatory Features Predict Survival in Advanced Non-Small Cell Lung Cancer Patients Treated With Immune Checkpoint Inhibitors.
IF 2 4区 医学Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Maurizio Balbi, Giulia Mazzaschi, Ludovica Leo, Lucas Moron Dalla Tor, Gianluca Milanese, Cristina Marrocchio, Mario Silva, Rebecca Mura, Pasquale Favia, Giovanni Bocchialini, Francesca Trentini, Roberta Minari, Luca Ampollini, Federico Quaini, Giovanni Roti, Marcello Tiseo, Nicola Sverzellati
{"title":"Longitudinal Changes of CT-radiomic and Systemic Inflammatory Features Predict Survival in Advanced Non-Small Cell Lung Cancer Patients Treated With Immune Checkpoint Inhibitors.","authors":"Maurizio Balbi, Giulia Mazzaschi, Ludovica Leo, Lucas Moron Dalla Tor, Gianluca Milanese, Cristina Marrocchio, Mario Silva, Rebecca Mura, Pasquale Favia, Giovanni Bocchialini, Francesca Trentini, Roberta Minari, Luca Ampollini, Federico Quaini, Giovanni Roti, Marcello Tiseo, Nicola Sverzellati","doi":"10.1097/RTI.0000000000000801","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to determine whether longitudinal changes in CT radiomic features (RFs) and systemic inflammatory indices outperform single-time-point assessment in predicting survival in advanced non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs).</p><p><strong>Materials and methods: </strong>We retrospectively acquired pretreatment (T0) and first disease assessment (T1) RFs and systemic inflammatory indices from a single-center cohort of stage IV NSCLC patients and computed their delta (Δ) variation as [(T1-T0)/T0]. RFs from the primary tumor were selected for building baseline-radiomic (RAD) and Δ-RAD scores using the linear combination of standardized predictors detected by LASSO Cox regression models. Cox models were generated using clinical features alone or combined with baseline and Δ blood parameters and integrated with baseline-RAD and Δ-RAD. All models were 3-fold cross-validated. A prognostic index (PI) of each model was tested to stratify overall survival (OS) through Kaplan-Meier analysis.</p><p><strong>Results: </strong>We included 90 ICI-treated NSCLC patients (median age 70 y [IQR=42 to 85], 63 males). Δ-RAD outperformed baseline-RAD for predicting OS [c-index: 0.632 (95%CI: 0.628 to 0.636) vs. 0.605 (95%CI: 0.601 to 0.608) in the test splits]. Integrating longitudinal changes of systemic inflammatory indices and Δ-RAD with clinical data led to the best model performance [Integrated-Δ model, c-index: 0.750 (95% CI: 0.749 to 0.751) in training and 0.718 (95% CI: 0.715 to 0.721) in testing splits]. PI enabled significant OS stratification within all the models (P-value <0.01), reaching the greatest discriminative ability in Δ models (high-risk group HR up to 7.37, 95% CI: 3.9 to 13.94, P<0.01).</p><p><strong>Conclusion: </strong>Δ-RAD improved OS prediction compared with single-time-point radiomic in advanced ICI-treated NSCLC. Integrating Δ-RAD with a longitudinal assessment of clinical and laboratory data further improved the prognostic performance.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000801","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aims to determine whether longitudinal changes in CT radiomic features (RFs) and systemic inflammatory indices outperform single-time-point assessment in predicting survival in advanced non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs).
Materials and methods: We retrospectively acquired pretreatment (T0) and first disease assessment (T1) RFs and systemic inflammatory indices from a single-center cohort of stage IV NSCLC patients and computed their delta (Δ) variation as [(T1-T0)/T0]. RFs from the primary tumor were selected for building baseline-radiomic (RAD) and Δ-RAD scores using the linear combination of standardized predictors detected by LASSO Cox regression models. Cox models were generated using clinical features alone or combined with baseline and Δ blood parameters and integrated with baseline-RAD and Δ-RAD. All models were 3-fold cross-validated. A prognostic index (PI) of each model was tested to stratify overall survival (OS) through Kaplan-Meier analysis.
Results: We included 90 ICI-treated NSCLC patients (median age 70 y [IQR=42 to 85], 63 males). Δ-RAD outperformed baseline-RAD for predicting OS [c-index: 0.632 (95%CI: 0.628 to 0.636) vs. 0.605 (95%CI: 0.601 to 0.608) in the test splits]. Integrating longitudinal changes of systemic inflammatory indices and Δ-RAD with clinical data led to the best model performance [Integrated-Δ model, c-index: 0.750 (95% CI: 0.749 to 0.751) in training and 0.718 (95% CI: 0.715 to 0.721) in testing splits]. PI enabled significant OS stratification within all the models (P-value <0.01), reaching the greatest discriminative ability in Δ models (high-risk group HR up to 7.37, 95% CI: 3.9 to 13.94, P<0.01).
Conclusion: Δ-RAD improved OS prediction compared with single-time-point radiomic in advanced ICI-treated NSCLC. Integrating Δ-RAD with a longitudinal assessment of clinical and laboratory data further improved the prognostic performance.
期刊介绍:
Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology.
Official Journal of the Society of Thoracic Radiology:
Japanese Society of Thoracic Radiology
Korean Society of Thoracic Radiology
European Society of Thoracic Imaging.