Longitudinal Changes of CT-radiomic and Systemic Inflammatory Features Predict Survival in Advanced Non-Small Cell Lung Cancer Patients Treated With Immune Checkpoint Inhibitors.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Maurizio Balbi, Giulia Mazzaschi, Ludovica Leo, Lucas Moron Dalla Tor, Gianluca Milanese, Cristina Marrocchio, Mario Silva, Rebecca Mura, Pasquale Favia, Giovanni Bocchialini, Francesca Trentini, Roberta Minari, Luca Ampollini, Federico Quaini, Giovanni Roti, Marcello Tiseo, Nicola Sverzellati
{"title":"Longitudinal Changes of CT-radiomic and Systemic Inflammatory Features Predict Survival in Advanced Non-Small Cell Lung Cancer Patients Treated With Immune Checkpoint Inhibitors.","authors":"Maurizio Balbi, Giulia Mazzaschi, Ludovica Leo, Lucas Moron Dalla Tor, Gianluca Milanese, Cristina Marrocchio, Mario Silva, Rebecca Mura, Pasquale Favia, Giovanni Bocchialini, Francesca Trentini, Roberta Minari, Luca Ampollini, Federico Quaini, Giovanni Roti, Marcello Tiseo, Nicola Sverzellati","doi":"10.1097/RTI.0000000000000801","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to determine whether longitudinal changes in CT radiomic features (RFs) and systemic inflammatory indices outperform single-time-point assessment in predicting survival in advanced non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs).</p><p><strong>Materials and methods: </strong>We retrospectively acquired pretreatment (T0) and first disease assessment (T1) RFs and systemic inflammatory indices from a single-center cohort of stage IV NSCLC patients and computed their delta (Δ) variation as [(T1-T0)/T0]. RFs from the primary tumor were selected for building baseline-radiomic (RAD) and Δ-RAD scores using the linear combination of standardized predictors detected by LASSO Cox regression models. Cox models were generated using clinical features alone or combined with baseline and Δ blood parameters and integrated with baseline-RAD and Δ-RAD. All models were 3-fold cross-validated. A prognostic index (PI) of each model was tested to stratify overall survival (OS) through Kaplan-Meier analysis.</p><p><strong>Results: </strong>We included 90 ICI-treated NSCLC patients (median age 70 y [IQR=42 to 85], 63 males). Δ-RAD outperformed baseline-RAD for predicting OS [c-index: 0.632 (95%CI: 0.628 to 0.636) vs. 0.605 (95%CI: 0.601 to 0.608) in the test splits]. Integrating longitudinal changes of systemic inflammatory indices and Δ-RAD with clinical data led to the best model performance [Integrated-Δ model, c-index: 0.750 (95% CI: 0.749 to 0.751) in training and 0.718 (95% CI: 0.715 to 0.721) in testing splits]. PI enabled significant OS stratification within all the models (P-value <0.01), reaching the greatest discriminative ability in Δ models (high-risk group HR up to 7.37, 95% CI: 3.9 to 13.94, P<0.01).</p><p><strong>Conclusion: </strong>Δ-RAD improved OS prediction compared with single-time-point radiomic in advanced ICI-treated NSCLC. Integrating Δ-RAD with a longitudinal assessment of clinical and laboratory data further improved the prognostic performance.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000801","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aims to determine whether longitudinal changes in CT radiomic features (RFs) and systemic inflammatory indices outperform single-time-point assessment in predicting survival in advanced non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs).

Materials and methods: We retrospectively acquired pretreatment (T0) and first disease assessment (T1) RFs and systemic inflammatory indices from a single-center cohort of stage IV NSCLC patients and computed their delta (Δ) variation as [(T1-T0)/T0]. RFs from the primary tumor were selected for building baseline-radiomic (RAD) and Δ-RAD scores using the linear combination of standardized predictors detected by LASSO Cox regression models. Cox models were generated using clinical features alone or combined with baseline and Δ blood parameters and integrated with baseline-RAD and Δ-RAD. All models were 3-fold cross-validated. A prognostic index (PI) of each model was tested to stratify overall survival (OS) through Kaplan-Meier analysis.

Results: We included 90 ICI-treated NSCLC patients (median age 70 y [IQR=42 to 85], 63 males). Δ-RAD outperformed baseline-RAD for predicting OS [c-index: 0.632 (95%CI: 0.628 to 0.636) vs. 0.605 (95%CI: 0.601 to 0.608) in the test splits]. Integrating longitudinal changes of systemic inflammatory indices and Δ-RAD with clinical data led to the best model performance [Integrated-Δ model, c-index: 0.750 (95% CI: 0.749 to 0.751) in training and 0.718 (95% CI: 0.715 to 0.721) in testing splits]. PI enabled significant OS stratification within all the models (P-value <0.01), reaching the greatest discriminative ability in Δ models (high-risk group HR up to 7.37, 95% CI: 3.9 to 13.94, P<0.01).

Conclusion: Δ-RAD improved OS prediction compared with single-time-point radiomic in advanced ICI-treated NSCLC. Integrating Δ-RAD with a longitudinal assessment of clinical and laboratory data further improved the prognostic performance.

CT放射学和全身炎症特征的纵向变化可预测接受免疫检查点抑制剂治疗的晚期非小细胞肺癌患者的生存期
目的:本研究旨在确定在预测接受免疫检查点抑制剂(ICIs)治疗的晚期非小细胞肺癌(NSCLC)患者的生存率方面,CT放射学特征(RFs)和全身炎症指数的纵向变化是否优于单时点评估:我们回顾性地从单中心队列的IV期NSCLC患者中获取了治疗前(T0)和首次疾病评估(T1)的射频和全身炎症指数,并计算了它们的delta (Δ)变化,即[(T1-T0)/T0]。利用 LASSO Cox 回归模型检测到的标准化预测因子的线性组合,从原发肿瘤中筛选出 RFs,用于建立基线-放射组学(RAD)和 Δ-RAD 评分。Cox模型单独使用临床特征或与基线和Δ血液参数相结合生成,并与基线-RAD和Δ-RAD相结合。所有模型均经过 3 倍交叉验证。通过 Kaplan-Meier 分析,测试了每个模型的预后指数(PI),以对总生存期(OS)进行分层:我们纳入了90名接受过ICI治疗的NSCLC患者(中位年龄70岁[IQR=42至85岁],63名男性)。Δ-RAD在预测OS方面优于基线-RAD[c-指数:0.632(95%C)]:c-index: 0.632 (95%CI: 0.628 to 0.636) vs. 0.605 (95%CI: 0.601 to 0.608) in the test splits]。将全身炎症指数和Δ-RAD的纵向变化与临床数据相结合,可获得最佳的模型性能[综合-Δ模型,c-指数:0.750 (95% CI: 0.628 to 0.636) vs. 测试分割:0.605 (95%CI: 0.601 to 0.608]:在训练分区中为 0.750(95% CI:0.749 至 0.751),在测试分区中为 0.718(95% CI:0.715 至 0.721)]。在所有模型中,PI都能对OS进行明显的分层(P值 结论:在晚期ICI治疗的NSCLC中,与单时点放射组学相比,Δ-RAD能改善OS预测。将Δ-RAD与临床和实验室数据的纵向评估相结合,可进一步提高预后效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Thoracic Imaging
Journal of Thoracic Imaging 医学-核医学
CiteScore
7.10
自引率
9.10%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology. Official Journal of the Society of Thoracic Radiology: Japanese Society of Thoracic Radiology Korean Society of Thoracic Radiology European Society of Thoracic Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信