Single-Molecule Traps in Covalent Organic Frameworks for Selective Capture of C2H2 from C2H4-Rich Gas Mixtures.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2024-08-26 eCollection Date: 2024-01-01 DOI:10.34133/research.0458
Yilun Zhou, Yinghui Xie, Xiaolu Liu, Mengjie Hao, Zhongshan Chen, Hui Yang, Geoffrey I N Waterhouse, Shengqian Ma, Xiangke Wang
{"title":"Single-Molecule Traps in Covalent Organic Frameworks for Selective Capture of C<sub>2</sub>H<sub>2</sub> from C<sub>2</sub>H<sub>4</sub>-Rich Gas Mixtures.","authors":"Yilun Zhou, Yinghui Xie, Xiaolu Liu, Mengjie Hao, Zhongshan Chen, Hui Yang, Geoffrey I N Waterhouse, Shengqian Ma, Xiangke Wang","doi":"10.34133/research.0458","DOIUrl":null,"url":null,"abstract":"<p><p>Removing trace amounts of acetylene (C<sub>2</sub>H<sub>2</sub>) from ethylene (C<sub>2</sub>H<sub>4</sub>)-rich gas mixtures is vital for the supply of high-purity C<sub>2</sub>H<sub>4</sub> to the chemical industry and plastics sector. However, selective removal of C<sub>2</sub>H<sub>2</sub> is challenging due to the similar physical and chemical properties of C<sub>2</sub>H<sub>2</sub> and C<sub>2</sub>H<sub>4</sub>. Here, we report a \"single-molecule trap\" strategy that utilizes electrostatic interactions between the one-dimensional (1D) channel of a covalent organic framework (denoted as COF-1) and C<sub>2</sub>H<sub>2</sub> molecules to massively enhance the adsorption selectivity toward C<sub>2</sub>H<sub>2</sub> over C<sub>2</sub>H<sub>4</sub>. C<sub>2</sub>H<sub>2</sub> molecules are immobilized via interactions with the O atom of C=O groups, the N atom of C≡N groups, and the H atom of phenyl groups in 1D channels of COF-1. Due to its exceptionally high affinity for C<sub>2</sub>H<sub>2</sub>, COF-1 delivered a remarkable C<sub>2</sub>H<sub>2</sub> uptake of 7.97 cm<sup>3</sup>/g at 298 K and 0.01 bar, surpassing all reported COFs and many other state-of-the-art adsorbents under similar conditions. Further, COF-1 demonstrated outstanding performance for the separation of C<sub>2</sub>H<sub>2</sub> and C<sub>2</sub>H<sub>4</sub> in breakthrough experiments under dynamic conditions. COF-1 adsorbed C<sub>2</sub>H<sub>2</sub> at a capacity of 0.17 cm<sup>3</sup>/g at 2,000 s/g when exposed to 0.5 ml/min C<sub>2</sub>H<sub>4</sub>-rich gas mixture (99% C<sub>2</sub>H<sub>4</sub>) at 298 K, directly producing high-purity C<sub>2</sub>H<sub>4</sub> gas at a rate of 3.95 cm<sup>3</sup>/g. Computational simulations showed that the strong affinity between C<sub>2</sub>H<sub>2</sub> and the single-molecule traps of COF-1 were responsible for the excellent separation performance. COF-1 is also robust, providing a promising new strategy for the efficient removal of trace amounts of C<sub>2</sub>H<sub>2</sub> in practical C<sub>2</sub>H<sub>4</sub> purification.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0458"},"PeriodicalIF":11.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345538/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0458","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Removing trace amounts of acetylene (C2H2) from ethylene (C2H4)-rich gas mixtures is vital for the supply of high-purity C2H4 to the chemical industry and plastics sector. However, selective removal of C2H2 is challenging due to the similar physical and chemical properties of C2H2 and C2H4. Here, we report a "single-molecule trap" strategy that utilizes electrostatic interactions between the one-dimensional (1D) channel of a covalent organic framework (denoted as COF-1) and C2H2 molecules to massively enhance the adsorption selectivity toward C2H2 over C2H4. C2H2 molecules are immobilized via interactions with the O atom of C=O groups, the N atom of C≡N groups, and the H atom of phenyl groups in 1D channels of COF-1. Due to its exceptionally high affinity for C2H2, COF-1 delivered a remarkable C2H2 uptake of 7.97 cm3/g at 298 K and 0.01 bar, surpassing all reported COFs and many other state-of-the-art adsorbents under similar conditions. Further, COF-1 demonstrated outstanding performance for the separation of C2H2 and C2H4 in breakthrough experiments under dynamic conditions. COF-1 adsorbed C2H2 at a capacity of 0.17 cm3/g at 2,000 s/g when exposed to 0.5 ml/min C2H4-rich gas mixture (99% C2H4) at 298 K, directly producing high-purity C2H4 gas at a rate of 3.95 cm3/g. Computational simulations showed that the strong affinity between C2H2 and the single-molecule traps of COF-1 were responsible for the excellent separation performance. COF-1 is also robust, providing a promising new strategy for the efficient removal of trace amounts of C2H2 in practical C2H4 purification.

共价有机框架中的单分子捕获器,用于从富含 C2H4 的混合气体中选择性捕获 C2H2。
从富含乙烯(C2H4)的气体混合物中去除微量乙炔(C2H2)对于向化学工业和塑料行业供应高纯度 C2H4 至关重要。然而,由于 C2H2 和 C2H4 具有相似的物理和化学性质,因此选择性去除 C2H2 具有挑战性。在此,我们报告了一种 "单分子捕集 "策略,它利用共价有机框架(COF-1)的一维(1D)通道与 C2H2 分子之间的静电相互作用,大幅提高了 C2H2 对 C2H4 的吸附选择性。在 COF-1 的一维通道中,C2H2 分子通过与 C=O 基团的 O 原子、C≡N 基团的 N 原子和苯基的 H 原子相互作用而被固定。由于 COF-1 对 C2H2 具有极高的亲和力,因此在 298 K 和 0.01 bar 条件下,COF-1 对 C2H2 的吸附量高达 7.97 cm3/g,超过了所有已报道的 COF 以及类似条件下的许多其他先进吸附剂。此外,在动态条件下进行的突破实验中,COF-1 在分离 C2H2 和 C2H4 方面表现出色。当 COF-1 在 298 K 下接触 0.5 ml/min 富含 C2H4 的混合气体(99% C2H4)时,吸附 C2H2 的能力为 0.17 cm3/g(2,000 s/g),直接产生高纯度 C2H4 气体的速率为 3.95 cm3/g。计算模拟显示,C2H2 与 COF-1 的单分子捕获器之间的强亲和力是其优异分离性能的原因。COF-1 还具有很强的稳定性,为在实际 C2H4 纯化过程中高效去除痕量 C2H2 提供了一种很有前景的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信