{"title":"Aquaporin-1 and Osmosis: From Physiology to Precision in Peritoneal Dialysis.","authors":"Olivier Devuyst","doi":"10.1681/ASN.0000000000000496","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of the aquaporin family of water channels has provided a molecular counterpart to the movement of water across biological membranes. The distribution of aquaporins in specific cell types, their selectivity and very high capacity for water permeation, and the control of their expression and/or trafficking are key to sustain osmosis in multiple tissues. Here, we review the convergent evidence demonstrating that aquaporin-1 (AQP1) facilitates water transport across endothelial cells in the peritoneal membrane, a key process for peritoneal dialysis-the leading modality of home-based dialysis therapy for patients with kidney failure. Genetic and pharmacologic studies in mouse and cell models indicated that AQP1 plays a critical role in crystalloid osmosis, with clinically relevant effects on water transport and risk of death and technique failure for patients on dialysis. By contrast, AQP1 plays no role in colloid osmosis. These studies substantiate potential strategies to improve free water transport and ultrafiltration in patients treated by peritoneal dialysis.</p>","PeriodicalId":17217,"journal":{"name":"Journal of The American Society of Nephrology","volume":" ","pages":"1589-1599"},"PeriodicalIF":10.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Society of Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1681/ASN.0000000000000496","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of the aquaporin family of water channels has provided a molecular counterpart to the movement of water across biological membranes. The distribution of aquaporins in specific cell types, their selectivity and very high capacity for water permeation, and the control of their expression and/or trafficking are key to sustain osmosis in multiple tissues. Here, we review the convergent evidence demonstrating that aquaporin-1 (AQP1) facilitates water transport across endothelial cells in the peritoneal membrane, a key process for peritoneal dialysis-the leading modality of home-based dialysis therapy for patients with kidney failure. Genetic and pharmacologic studies in mouse and cell models indicated that AQP1 plays a critical role in crystalloid osmosis, with clinically relevant effects on water transport and risk of death and technique failure for patients on dialysis. By contrast, AQP1 plays no role in colloid osmosis. These studies substantiate potential strategies to improve free water transport and ultrafiltration in patients treated by peritoneal dialysis.
期刊介绍:
The Journal of the American Society of Nephrology (JASN) stands as the preeminent kidney journal globally, offering an exceptional synthesis of cutting-edge basic research, clinical epidemiology, meta-analysis, and relevant editorial content. Representing a comprehensive resource, JASN encompasses clinical research, editorials distilling key findings, perspectives, and timely reviews.
Editorials are skillfully crafted to elucidate the essential insights of the parent article, while JASN actively encourages the submission of Letters to the Editor discussing recently published articles. The reviews featured in JASN are consistently erudite and comprehensive, providing thorough coverage of respective fields. Since its inception in July 1990, JASN has been a monthly publication.
JASN publishes original research reports and editorial content across a spectrum of basic and clinical science relevant to the broad discipline of nephrology. Topics covered include renal cell biology, developmental biology of the kidney, genetics of kidney disease, cell and transport physiology, hemodynamics and vascular regulation, mechanisms of blood pressure regulation, renal immunology, kidney pathology, pathophysiology of kidney diseases, nephrolithiasis, clinical nephrology (including dialysis and transplantation), and hypertension. Furthermore, articles addressing healthcare policy and care delivery issues relevant to nephrology are warmly welcomed.