{"title":"Optimization of an in situ liver perfusion method to evaluate hepatic function of juvenile American alligators (Alligator mississippiensis).","authors":"Yu Umeki, David Hala, Lene Hebsgaard Petersen","doi":"10.1242/bio.060532","DOIUrl":null,"url":null,"abstract":"<p><p>American alligators (Alligator mississippiensis) are a sentinel species whose health is representative of environmental quality. However, their susceptibility to various natural or anthropogenic stressors is yet to be comprehensively studied. Understanding hepatic function in such assessments is essential as the liver is the central organ in the metabolic physiology of an organism, and therefore influences its adaptive capability. In this study, a novel liver perfusion system was developed to study the hepatic physiology of juvenile alligators. First, a cannulation procedure was developed for an in situ liver perfusion preparation. Second, an optimal flow rate of 0.5 ml/min/g liver was determined based on the oxygen content in the effluent perfusate. Third, the efficacy of the liver preparation was tested by perfusing the liver with normoxic or hypoxic Tyrode's buffer while various biomarkers of hepatic function were monitored in the effluent perfusate. Our results showed that in the normoxic perfusion, the aspartate transferase (AST) and lactate/pyruvate ratio in the perfusate remained stable and within an acceptable physiological range for 6 h. In contrast, hypoxia exposure significantly increased the lactate/pyruvate ratio in the perfusate after 2 h, indicating an induction of anaerobic metabolism. These results suggest that the perfused liver remained viable during the perfusion period and exhibited the expected physiological response under hypoxia exposure. The liver perfusion system developed in this study provides an experimental framework with which to study the basic hepatic physiology of alligators and elucidate the effects of environmental or anthropogenic stressors on the metabolic physiology of this sentinel species.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"13 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060532","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
American alligators (Alligator mississippiensis) are a sentinel species whose health is representative of environmental quality. However, their susceptibility to various natural or anthropogenic stressors is yet to be comprehensively studied. Understanding hepatic function in such assessments is essential as the liver is the central organ in the metabolic physiology of an organism, and therefore influences its adaptive capability. In this study, a novel liver perfusion system was developed to study the hepatic physiology of juvenile alligators. First, a cannulation procedure was developed for an in situ liver perfusion preparation. Second, an optimal flow rate of 0.5 ml/min/g liver was determined based on the oxygen content in the effluent perfusate. Third, the efficacy of the liver preparation was tested by perfusing the liver with normoxic or hypoxic Tyrode's buffer while various biomarkers of hepatic function were monitored in the effluent perfusate. Our results showed that in the normoxic perfusion, the aspartate transferase (AST) and lactate/pyruvate ratio in the perfusate remained stable and within an acceptable physiological range for 6 h. In contrast, hypoxia exposure significantly increased the lactate/pyruvate ratio in the perfusate after 2 h, indicating an induction of anaerobic metabolism. These results suggest that the perfused liver remained viable during the perfusion period and exhibited the expected physiological response under hypoxia exposure. The liver perfusion system developed in this study provides an experimental framework with which to study the basic hepatic physiology of alligators and elucidate the effects of environmental or anthropogenic stressors on the metabolic physiology of this sentinel species.
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.