Species pool and local assembly processes drive β diversity of ammonia-oxidizing and denitrifying microbial communities in rivers along a latitudinal gradient
Xiang Xiong, Lian Feng, Jieya Huang, Wenjie Wan, Yuyi Yang, Wenzhi Liu
{"title":"Species pool and local assembly processes drive β diversity of ammonia-oxidizing and denitrifying microbial communities in rivers along a latitudinal gradient","authors":"Xiang Xiong, Lian Feng, Jieya Huang, Wenjie Wan, Yuyi Yang, Wenzhi Liu","doi":"10.1111/mec.17516","DOIUrl":null,"url":null,"abstract":"<p>Both regional species pool and local community assembly mechanism drive the microbial diversity patterns across geographical gradients. However, little has been done to separate their effects on the β diversity patterns of microbial communities involved in nitrogen (N) cycling in river ecosystems. Here, we use high-throughput sequencing of the archaeal <i>amoA</i>, bacterial <i>amoA</i>, <i>nirK</i>, and <i>nirS</i> genes, null model, and neutral community model to distinguish the relative importance of species pool and local assembly processes for ammonia-oxidizing and denitrifying communities in river wetlands along a latitudinal gradient in eastern China. Results indicated that the β diversity of the <i>nirS</i>-type denitrifying community co-varied with γ diversity and environmental heterogeneity, implying that regional species pool and heterogeneous selection explained variation in β diversity. However, the β diversity of ammonia-oxidizing and <i>nirK</i>-type denitrifying communities did not correlate with γ diversity and environmental heterogeneity. The continuous hump distribution of β deviation along the latitudinal gradient and the lower species dispersal rate indicated that the dispersal limitation shaped the variation in β diversity of ammonia-oxidizing and <i>nirK</i>-type denitrifying communities. Additionally, biotic interactions drove ammonia-oxidizing and <i>nirS</i>-type denitrifying communities by influencing species co-occurrence patterns. Our study highlights the importance of regional species pool and local community assembly processes in shaping geographical patterns of N-cycling microorganisms and extends knowledge of their adaptability to a continuously changing environment on a large scale.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17516","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Both regional species pool and local community assembly mechanism drive the microbial diversity patterns across geographical gradients. However, little has been done to separate their effects on the β diversity patterns of microbial communities involved in nitrogen (N) cycling in river ecosystems. Here, we use high-throughput sequencing of the archaeal amoA, bacterial amoA, nirK, and nirS genes, null model, and neutral community model to distinguish the relative importance of species pool and local assembly processes for ammonia-oxidizing and denitrifying communities in river wetlands along a latitudinal gradient in eastern China. Results indicated that the β diversity of the nirS-type denitrifying community co-varied with γ diversity and environmental heterogeneity, implying that regional species pool and heterogeneous selection explained variation in β diversity. However, the β diversity of ammonia-oxidizing and nirK-type denitrifying communities did not correlate with γ diversity and environmental heterogeneity. The continuous hump distribution of β deviation along the latitudinal gradient and the lower species dispersal rate indicated that the dispersal limitation shaped the variation in β diversity of ammonia-oxidizing and nirK-type denitrifying communities. Additionally, biotic interactions drove ammonia-oxidizing and nirS-type denitrifying communities by influencing species co-occurrence patterns. Our study highlights the importance of regional species pool and local community assembly processes in shaping geographical patterns of N-cycling microorganisms and extends knowledge of their adaptability to a continuously changing environment on a large scale.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms