Strong Covalent Metal-Ligand Interaction Enables a Fast Kinetic and Structurally Stable Na-Ion Layered Cathode

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-08-27 DOI:10.1002/cssc.202401538
Jing-Chang Li, Sheng Xu, Jiaming Tian, Bo Peng, Yu Sun, Jiayi Tang, Zhaoguo Liu, Yuankai Liu, Daxian Zuo, Chengrong Xu, Yuan Rao, Yu Deng, Haoshen Zhou, Shaohua Guo
{"title":"Strong Covalent Metal-Ligand Interaction Enables a Fast Kinetic and Structurally Stable Na-Ion Layered Cathode","authors":"Jing-Chang Li,&nbsp;Sheng Xu,&nbsp;Jiaming Tian,&nbsp;Bo Peng,&nbsp;Yu Sun,&nbsp;Jiayi Tang,&nbsp;Zhaoguo Liu,&nbsp;Yuankai Liu,&nbsp;Daxian Zuo,&nbsp;Chengrong Xu,&nbsp;Yuan Rao,&nbsp;Yu Deng,&nbsp;Haoshen Zhou,&nbsp;Shaohua Guo","doi":"10.1002/cssc.202401538","DOIUrl":null,"url":null,"abstract":"<p>Anionic redox chemistry has attracted increasing attention for the improvement in the reversible capacity and energy density of cathode materials in Li/Na-ion batteries. However, adverse electrochemical behaviors, such as voltage hysteresis and sluggish kinetics resulting from weak metal-ligand interactions, commonly occur with anionic redox reactions. Currently, the mechanistic investigation driving these issues still remains foggy. Here, we chemically designed Na<sub>0.8</sub>Fe<sub>0.4</sub>Ti<sub>0.6</sub>S<sub>2</sub> and Na<sub>0.8</sub>Fe<sub>0.4</sub>Ti<sub>0.6</sub>O<sub>2</sub> as model cathodes to explore the covalency effects on metal-ligand interactions during anionic redox process. Na<sub>0.8</sub>Fe<sub>0.4</sub>Ti<sub>0.6</sub>S<sub>2</sub> with strengthened covalent interaction of metal-ligand bonds exhibits smaller voltage hysteresis and faster kinetics than Na<sub>0.8</sub>Fe<sub>0.4</sub>Ti<sub>0.6</sub>O<sub>2</sub> during (de)sodiation process. Theoretical calculations suggest that Fe is the dominant redox-active center in Na<sub>0.8</sub>Fe<sub>0.4</sub>Ti<sub>0.6</sub>S<sub>2</sub>, whereas the redox-active center moves from Fe to O with the removal of Na<sup>+</sup> in Na<sub>0.8</sub>Fe<sub>0.4</sub>Ti<sub>0.6</sub>O<sub>2</sub>. We attribute the above different redox behaviors between Na<sub>0.8</sub>Fe<sub>0.4</sub>Ti<sub>0.6</sub>S<sub>2</sub> and Na<sub>0.8</sub>Fe<sub>0.4</sub>Ti<sub>0.6</sub>O<sub>2</sub> to the charge transfer kinetics from ligand to metal. Moreover, the structural stability of Na<sub>0.8</sub>Fe<sub>0.4</sub>Ti<sub>0.6</sub>S<sub>2</sub> is enhanced by increasing the cation migration barriers through strong metal-ligand bonds during desodiation. These insights into the originality of metal-ligand interactions provide guidance for the design of high-capacity and structurally stable cathode materials for Li/Na-ion batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 2","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202401538","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anionic redox chemistry has attracted increasing attention for the improvement in the reversible capacity and energy density of cathode materials in Li/Na-ion batteries. However, adverse electrochemical behaviors, such as voltage hysteresis and sluggish kinetics resulting from weak metal-ligand interactions, commonly occur with anionic redox reactions. Currently, the mechanistic investigation driving these issues still remains foggy. Here, we chemically designed Na0.8Fe0.4Ti0.6S2 and Na0.8Fe0.4Ti0.6O2 as model cathodes to explore the covalency effects on metal-ligand interactions during anionic redox process. Na0.8Fe0.4Ti0.6S2 with strengthened covalent interaction of metal-ligand bonds exhibits smaller voltage hysteresis and faster kinetics than Na0.8Fe0.4Ti0.6O2 during (de)sodiation process. Theoretical calculations suggest that Fe is the dominant redox-active center in Na0.8Fe0.4Ti0.6S2, whereas the redox-active center moves from Fe to O with the removal of Na+ in Na0.8Fe0.4Ti0.6O2. We attribute the above different redox behaviors between Na0.8Fe0.4Ti0.6S2 and Na0.8Fe0.4Ti0.6O2 to the charge transfer kinetics from ligand to metal. Moreover, the structural stability of Na0.8Fe0.4Ti0.6S2 is enhanced by increasing the cation migration barriers through strong metal-ligand bonds during desodiation. These insights into the originality of metal-ligand interactions provide guidance for the design of high-capacity and structurally stable cathode materials for Li/Na-ion batteries.

Abstract Image

强共价金属配体相互作用实现了快速动力学和结构稳定的 Na 离子层状阴极。
阴离子氧化还原化学在提高锂/纳离子电池阴极材料的可逆容量和能量密度方面受到越来越多的关注。然而,阴离子氧化还原反应通常会出现不利的电化学行为,如电压滞后和金属-配体弱相互作用导致的动力学迟缓。目前,对这些问题的机理研究仍是一片迷雾。在此,我们用化学方法设计了 Na0.8Fe0.4Ti0.6S2 和 Na0.8Fe0.4Ti0.6O2 作为模型阴极,以探索阴离子氧化还原过程中金属-配体相互作用的共价效应。与 Na0.8Fe0.4Ti0.6O2相比,Na0.8Fe0.4Ti0.6S2 的金属-配体键的共价作用得到了加强,在(脱)钠过程中表现出更小的电压滞后和更快的动力学速度。理论计算表明,在 Na0.8Fe0.4Ti0.6S2 中,铁是主要的氧化还原活性中心,而在 Na0.8Fe0.4Ti0.6O2 中,随着 Na+ 的去除,氧化还原活性中心从铁转移到了 O。我们将 Na0.8Fe0.4Ti0.6S2 和 Na0.8Fe0.4Ti0.6O2 的上述不同氧化还原行为归因于配体到金属的电荷转移动力学。此外,Na0.8Fe0.4Ti0.6S2 的结构稳定性也得到了增强,这是因为在脱碘过程中,金属与配体之间的强键增加了阳离子迁移的障碍。这些关于金属-配体相互作用原始性的见解为设计高容量、结构稳定的锂/纳离子电池阴极材料提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信