Yanyan Shao, Zhou Xia, Liang Xu, Xinyu Zhang, Dongzi Yang, Zhicheng Yang, Jinrong Luo, Gang Xiao, Yinan Yang, Yiwen Su, Guoqing Lu, Jingyu Sun, Tao Cheng, Yuanlong Shao
{"title":"Crystalline Texture Reengineering of Zinc Powder-Based Fibrous Anode for Remarkable Mechano-Electrochemical Stability","authors":"Yanyan Shao, Zhou Xia, Liang Xu, Xinyu Zhang, Dongzi Yang, Zhicheng Yang, Jinrong Luo, Gang Xiao, Yinan Yang, Yiwen Su, Guoqing Lu, Jingyu Sun, Tao Cheng, Yuanlong Shao","doi":"10.1002/adma.202407143","DOIUrl":null,"url":null,"abstract":"<p>The challenge of inadequate mechano-electrochemical stability in rechargeable fibrous Zn-ion batteries (FZIBs) has emerged as a critical challenge for their broad applications. Traditional rigid Zn wires struggle to maintain a stable electrochemical interface when subjected to external mechanical stress. To address this issue, a wet-spinning technique has been developed to fabricate Zn powder based fibrous anode, while carbon nanotubes (CNTs) introduced to enhance the spinnability of Zn powder dispersion. The followed annealing treatment has been conducted to reengineer the Zn crystalline texture with CNTs assisted surface tension regulation to redirect (002) crystallographic textural formation. The thus-derived annealed Zn@CNTs fiber demonstrates great mechano-electrochemical stability after a long-term bending and electrochemical process. The fabricated FZIB demonstrates a remarkable durability, surpassing 800 h at 1 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>, with a marginal voltage hysteresis increase of 21.7 mV even after 100 twisting cycles under 180 degree twisting angle. The assembled FZIB full cell displays an 88.6% capacity retention even after a long cycle of a series of bending, knotting, and straightening deformation. It has been also woven into a 200 cm<sup>2</sup> size textile to demonstrate its capability to integrate into smart textiles.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 40","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407143","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The challenge of inadequate mechano-electrochemical stability in rechargeable fibrous Zn-ion batteries (FZIBs) has emerged as a critical challenge for their broad applications. Traditional rigid Zn wires struggle to maintain a stable electrochemical interface when subjected to external mechanical stress. To address this issue, a wet-spinning technique has been developed to fabricate Zn powder based fibrous anode, while carbon nanotubes (CNTs) introduced to enhance the spinnability of Zn powder dispersion. The followed annealing treatment has been conducted to reengineer the Zn crystalline texture with CNTs assisted surface tension regulation to redirect (002) crystallographic textural formation. The thus-derived annealed Zn@CNTs fiber demonstrates great mechano-electrochemical stability after a long-term bending and electrochemical process. The fabricated FZIB demonstrates a remarkable durability, surpassing 800 h at 1 mA cm−2 and 1 mAh cm−2, with a marginal voltage hysteresis increase of 21.7 mV even after 100 twisting cycles under 180 degree twisting angle. The assembled FZIB full cell displays an 88.6% capacity retention even after a long cycle of a series of bending, knotting, and straightening deformation. It has been also woven into a 200 cm2 size textile to demonstrate its capability to integrate into smart textiles.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.