Missing Values in Longitudinal Proteome Dynamics Studies: Making a Case for Data Multiple Imputation.

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Journal of Proteome Research Pub Date : 2024-09-06 Epub Date: 2024-08-27 DOI:10.1021/acs.jproteome.4c00263
Yu Yan, Baradwaj Simha Sankar, Bilal Mirza, Dominic C M Ng, Alexander R Pelletier, Sarah D Huang, Wei Wang, Karol Watson, Ding Wang, Peipei Ping
{"title":"Missing Values in Longitudinal Proteome Dynamics Studies: Making a Case for Data Multiple Imputation.","authors":"Yu Yan, Baradwaj Simha Sankar, Bilal Mirza, Dominic C M Ng, Alexander R Pelletier, Sarah D Huang, Wei Wang, Karol Watson, Ding Wang, Peipei Ping","doi":"10.1021/acs.jproteome.4c00263","DOIUrl":null,"url":null,"abstract":"<p><p>Temporal proteomics data sets are often confounded by the challenges of missing values. These missing data points, in a time-series context, can lead to fluctuations in measurements or the omission of critical events, thus hindering the ability to fully comprehend the underlying biomedical processes. We introduce a Data Multiple Imputation (DMI) pipeline designed to address this challenge in temporal data set turnover rate quantifications, enabling robust downstream analysis to gain novel discoveries. To demonstrate its utility and generalizability, we applied this pipeline to two use cases: a murine cardiac temporal proteomics data set and a human plasma temporal proteomics data set, both aimed at examining protein turnover rates. This DMI pipeline significantly enhanced the detection of protein turnover rate in both data sets, and furthermore, the imputed data sets captured new representation of proteins, leading to an augmented view of biological pathways, protein complex dynamics, as well as biomarker-disease associations. Importantly, DMI exhibited superior performance in benchmark data sets compared to single imputation methods (DSI). In summary, we have demonstrated that this DMI pipeline is effective at overcoming challenges introduced by missing values in temporal proteome dynamics studies.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"4151-4162"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00263","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal proteomics data sets are often confounded by the challenges of missing values. These missing data points, in a time-series context, can lead to fluctuations in measurements or the omission of critical events, thus hindering the ability to fully comprehend the underlying biomedical processes. We introduce a Data Multiple Imputation (DMI) pipeline designed to address this challenge in temporal data set turnover rate quantifications, enabling robust downstream analysis to gain novel discoveries. To demonstrate its utility and generalizability, we applied this pipeline to two use cases: a murine cardiac temporal proteomics data set and a human plasma temporal proteomics data set, both aimed at examining protein turnover rates. This DMI pipeline significantly enhanced the detection of protein turnover rate in both data sets, and furthermore, the imputed data sets captured new representation of proteins, leading to an augmented view of biological pathways, protein complex dynamics, as well as biomarker-disease associations. Importantly, DMI exhibited superior performance in benchmark data sets compared to single imputation methods (DSI). In summary, we have demonstrated that this DMI pipeline is effective at overcoming challenges introduced by missing values in temporal proteome dynamics studies.

Abstract Image

纵向蛋白质组动态研究中的缺失值:数据多重估算的理由。
时序蛋白质组学数据集常常受到缺失值的困扰。在时间序列背景下,这些缺失的数据点可能会导致测量值的波动或关键事件的遗漏,从而阻碍了全面理解潜在生物医学过程的能力。我们介绍了一种数据多重推算(DMI)管道,旨在解决时间数据集周转率量化中的这一难题,实现稳健的下游分析,从而获得新的发现。为了证明该管道的实用性和通用性,我们将其应用于两个用例:小鼠心脏时空蛋白质组学数据集和人血浆时空蛋白质组学数据集,这两个数据集的目的都是检测蛋白质的周转率。DMI 管道大大提高了这两个数据集中蛋白质周转率的检测能力,此外,归因数据集捕捉到了蛋白质的新表征,从而增强了对生物通路、蛋白质复合物动态以及生物标记物与疾病关联的认识。重要的是,与单一估算方法(DSI)相比,DMI 在基准数据集中表现出更优越的性能。总之,我们证明了 DMI 管道能有效克服时间蛋白质组动态研究中缺失值带来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信